Известно, что график функции f(x) проходит через точку (−5; 3) и параллелен графику функции y = −4x + 3.
а) Найдите уравнение данной функции f(x) ( ).
Графики линейных функций параллельны, если k₁ = k₂, а b₁ ≠ b₂.
k₁ = -4, значит, k₂ = -4;
Вычислить b₂:
Подставить в уравнение известные значения х и у (координаты точки) и вычислить b₂:
3 = -4 * (- 5) + b₂:
3 = 20 + b₂:
3 - 20 = b₂:
b₂ = -17;
Уравнение второй функции:
у = -4х - 17.
б) Постройте график данной функции f(x) ( ).
Построить графики. Графики линейной функции, прямые линии. Придать значения х, подставить в уравнение, вычислить у, записать в таблицу. Для построения прямой достаточно двух точек, для точности построения определить три.
Очевидно, что производя наши действия, мы не можем получить трехзначное число. Действительно, если мы получим 3-х значное число, нам ни как его не уменьшить до двузначного: умножение на 2 его только будет увеличивать, а разрешенной перестановкой из трехзначного нельзя получить двузначное.
Итак, будем умножать 1 на 2 пока не получим первое двузначное число. как только мы его получим, то в дополнение к умножению на 2 мы можем пользоваться перестановкой.
1) 1*2*2*2*2=16
теперь на надо решить умножать его дальше на 2 или переставить цифры.
Допусим мы переставим цифры и получим 61. Если мы умножим его на 2, то получим 3-х значное число, что нам не подходит. Значит надо прододить умножать 16 дальше.
2) 16*2=32
Опять начнем с прерстановки. 23. Умножим на 2, получим 46
2а) перестановка 46 нам даст 64 и дальнейше уменжение приведет опять к 3-х значному числу.
2б) 46*2=92. Перестановка. 29. Умножаем на 2. 58. перестановка 85. опять тупик.
3) 32*2=64. мы этот случай уже рассмотрели в варианте 2а)
В решении.
Объяснение:
Задание 1.
Известно, что график функции f(x) проходит через точку (−5; 3) и параллелен графику функции y = −4x + 3.
а) Найдите уравнение данной функции f(x) ( ).
Графики линейных функций параллельны, если k₁ = k₂, а b₁ ≠ b₂.
k₁ = -4, значит, k₂ = -4;
Вычислить b₂:
Подставить в уравнение известные значения х и у (координаты точки) и вычислить b₂:
3 = -4 * (- 5) + b₂:
3 = 20 + b₂:
3 - 20 = b₂:
b₂ = -17;
Уравнение второй функции:
у = -4х - 17.
б) Постройте график данной функции f(x) ( ).
Построить графики. Графики линейной функции, прямые линии. Придать значения х, подставить в уравнение, вычислить у, записать в таблицу. Для построения прямой достаточно двух точек, для точности построения определить три.
y = −4x + 3 у = -4х - 17
Таблицы:
х -1 0 1 х -6 -5 -4
у 7 3 -1 у 7 3 -1
По вычисленным точкам построить графики.
нет, нельзя
Объяснение:
Очевидно, что производя наши действия, мы не можем получить трехзначное число. Действительно, если мы получим 3-х значное число, нам ни как его не уменьшить до двузначного: умножение на 2 его только будет увеличивать, а разрешенной перестановкой из трехзначного нельзя получить двузначное.
Итак, будем умножать 1 на 2 пока не получим первое двузначное число. как только мы его получим, то в дополнение к умножению на 2 мы можем пользоваться перестановкой.
1) 1*2*2*2*2=16
теперь на надо решить умножать его дальше на 2 или переставить цифры.
Допусим мы переставим цифры и получим 61. Если мы умножим его на 2, то получим 3-х значное число, что нам не подходит. Значит надо прододить умножать 16 дальше.
2) 16*2=32
Опять начнем с прерстановки. 23. Умножим на 2, получим 46
2а) перестановка 46 нам даст 64 и дальнейше уменжение приведет опять к 3-х значному числу.
2б) 46*2=92. Перестановка. 29. Умножаем на 2. 58. перестановка 85. опять тупик.
3) 32*2=64. мы этот случай уже рассмотрели в варианте 2а)
Болше вариантов не осталось.
ответ: нет, нельзя