Вероятность выполнения нормы первым, вторым и третьим спортсменом равны соответственно p1=0.8, p2=0.7, p3=0.9, невыполнения - q1=1-p1=0.2, q2=1-p2=0.3, q3=1-p3=0.1. а) По крайней мере один спортсмен выполнит норму: то есть обеспечим отсутствие случая, когда все спортсмены не выполнят норму. То есть 1 - q1*q2*q3 = 1 - 0.2*0.3*0.1 = 0.994. б) Тут я хз, надо "по крайней мере" или "ровно" два спортсмена. Решу для обоих случаев. По крайней мере два спортсмена выполнят норму: Из ранее полученного значения вычтем еще и случаи, где ровно один спортсмен выполняет норму, а другие два не выполняют. 1 - q1*q2*q3 - p1*q2*q3 - q1*p2*q3 - q1*q2*p3 = 1 - 0.2*0.3*0.1 - 0.8*0.3*0.1 - 0.2*0.7*0.1 - 0.2*0.3*0.9 = 0.902. Ровно два спортсмена выполнят норму: p1*p2*q3 + p1*q2*p3 + q1*p2*p3 = 0.8*0.7*0.1 + 0.8*0.3*0.9 + 0.2*0.7*0.9 = 0.398.
sin(x)+cos(x) = 0 или 4sin²(x)-3 = 0
sin(x) = -cos(x) |:cos(x) 4sin²(x) = 3
tg(x) = -1 sin²(x) = 3/4
x₁ = 3π/4 + πn, n∈Z sin(x) = ±√3/2
sin(x) = -√3/2 или sin(x) = √3/2
x₂ = arcsin(-√3/2) + 2πn x₄ = arcsin(√3/2) + 2πn
x₃ = π-arcsin(-√3/2) + 2πn x₅ = π-arcsin(√3/2) + 2πn
x₂ = -π/3 + 2πn x₄ = π/3 + 2πn
x₃ = π+π/3 + 2πn x₅ = π-π/3 + 2πn
x₂ = 5π/3 + 2πn, n∈Z x₄ = π/3 + 2πn, n∈Z
x₃ = 4π/3 + 2πn, n∈Z x₅ = 2π/3 + 2πn, n∈Z
Следовательно:
x₄ = π/3 + 2πn, n∈Z,
x₅ = 2π/3 + 2πn, n∈Z
ответ: x₁ = 3π/4 + πn, n∈Z;
x₄ = π/3 + 2πn, n∈Z;
x₅ = 2π/3 + 2πn, n∈Z
а) По крайней мере один спортсмен выполнит норму:
то есть обеспечим отсутствие случая, когда все спортсмены не выполнят норму. То есть 1 - q1*q2*q3 = 1 - 0.2*0.3*0.1 = 0.994.
б) Тут я хз, надо "по крайней мере" или "ровно" два спортсмена. Решу для обоих случаев.
По крайней мере два спортсмена выполнят норму:
Из ранее полученного значения вычтем еще и случаи, где ровно один спортсмен выполняет норму, а другие два не выполняют.
1 - q1*q2*q3 - p1*q2*q3 - q1*p2*q3 - q1*q2*p3 = 1 - 0.2*0.3*0.1 - 0.8*0.3*0.1 - 0.2*0.7*0.1 - 0.2*0.3*0.9 = 0.902.
Ровно два спортсмена выполнят норму:
p1*p2*q3 + p1*q2*p3 + q1*p2*p3 = 0.8*0.7*0.1 + 0.8*0.3*0.9 + 0.2*0.7*0.9 = 0.398.