ΔАВС , АВ=13 , АС=11 , ВС=20
Наименьший угол в треугольнике лежит против наименьшей стороны,
то есть ∠В - наименьший, сторона АС=11 - наименьшая.
ВМ ⊥ пл. АВС ⇒ ВМ ⊥ любой прямой , лежащей в пл. АВС, в том числе и высоте треугольника ВН, ВН ⊥ АС.
Тогда по теореме о трёх перпендикулярах МН⊥АС (ВН - проекция МН на пл. АВС) ⇒ МН=24.
Найдём ВН , используя две формулы нахождения площади ΔАВС.
S(ABC)=1/2*АС*ВН ⇒ ВН=2S/АС .
Полупериметр р=1/2*(11+13+20)=22 ,
S=√p*(p-a)(p-b)(p-c)=√(22*11*9*2)=66 .
ВН=2*66/11=12 .
ΔВМН: ∠МВН=90° , ВМ=√(МН²-ВН²)=√(24²-12²)=√432=12√3
x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
ΔАВС , АВ=13 , АС=11 , ВС=20
Наименьший угол в треугольнике лежит против наименьшей стороны,
то есть ∠В - наименьший, сторона АС=11 - наименьшая.
ВМ ⊥ пл. АВС ⇒ ВМ ⊥ любой прямой , лежащей в пл. АВС, в том числе и высоте треугольника ВН, ВН ⊥ АС.
Тогда по теореме о трёх перпендикулярах МН⊥АС (ВН - проекция МН на пл. АВС) ⇒ МН=24.
Найдём ВН , используя две формулы нахождения площади ΔАВС.
S(ABC)=1/2*АС*ВН ⇒ ВН=2S/АС .
Полупериметр р=1/2*(11+13+20)=22 ,
S=√p*(p-a)(p-b)(p-c)=√(22*11*9*2)=66 .
ВН=2*66/11=12 .
ΔВМН: ∠МВН=90° , ВМ=√(МН²-ВН²)=√(24²-12²)=√432=12√3
x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.