Летя за ветром, его скорость стала 45+х, а против 45-х. В обеих случаях он пролетел 120км и потратил на все это в сумме 6 часов. Ко времени, за которое он пролетел двигаясь по ветру, добавляем время за которое он пролетел, летя против ветра и получаем 6. Решаем уравнение отталкиваясь от формулы S/v=t:
120/(45+x) + 120/(45-x) = 6
((120(45-х)+120(45+х))/((45+x)(45-x))=6
(5400-120x+5400+120x)/(2025+45x-45x-x^2)=6
10800/(2025-x^2)=6
10800=6(2025-x^2)
10800=12150-6x^2
6x^2=12150-10800
6x^2=1350
x^2=225
x1=15
x2=-15
Скорость не может быть отрицательной, поэтому х=15
Здравствуйте. Для решения данного задания следует заметить, что формула практически напоминает полный квадрат выражения. Однако это бы случилось если бы последнее число 25 было бы со знаком +. Поэтому представим -25 как 25-50. Получим 9x^2 + 30x + 25 - 50. Cвернем три первых в полный квадрат (3x + 5)^2 - 50. Полный квадрат всегда является неотрицательным числом, а его минимальное значение 0 при x = -5/3. Соотвественно так как этот x наименьшая переменная то для нее посчитаем и наименьшее выражение. Оно будет равно -50.
15
Объяснение:
x-скорость ветра
Летя за ветром, его скорость стала 45+х, а против 45-х. В обеих случаях он пролетел 120км и потратил на все это в сумме 6 часов. Ко времени, за которое он пролетел двигаясь по ветру, добавляем время за которое он пролетел, летя против ветра и получаем 6. Решаем уравнение отталкиваясь от формулы S/v=t:
120/(45+x) + 120/(45-x) = 6
((120(45-х)+120(45+х))/((45+x)(45-x))=6
(5400-120x+5400+120x)/(2025+45x-45x-x^2)=6
10800/(2025-x^2)=6
10800=6(2025-x^2)
10800=12150-6x^2
6x^2=12150-10800
6x^2=1350
x^2=225
x1=15
x2=-15
Скорость не может быть отрицательной, поэтому х=15