Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
Y=-8x/(x²+4). 1) Так как x²+4>0 при любых значениях x, то функция определена при любых х, т.е. областью определения является вся числовая ось. 2) При x=0 y=0, т.е график пересекает координатные оси в начале координат. Других точек пересечения с осями координат нет. 3) y(-x)=-y(x), так что функция является нечётной и потому её можно исследовать только при x≥0. 4) Функция непрерывна на всей числовой оси. lim y при x⇒+∞=0. Таким образом, ось ОХ является горизонтальной асимптотой. Других асимптот нет. 5) y'=(-8*(x²+4)+8x*2x)/(x²+4)²=(8x²-32)/(x²+4)²=8*(x²-4)/(x²+4)², откуда видно, что , т.е. производная обращается в 0 при x=2 и при x=-2. При x<-2 y'>0, при -2<x<2 y'<0, при x>2 y'>0. Отсюда ясно, что точка x=-2 есть точка максимума, равного y(-2)=16/(4+4)=2, а точка x=2 есть точка минимума, равного y(2)=-16/(4+4)=-2. Эти значения одновременно являются соответственно наибольшим и наименьшим значениями функции на всей области определения.
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
1) Так как x²+4>0 при любых значениях x, то функция определена при любых х, т.е. областью определения является вся числовая ось.
2) При x=0 y=0, т.е график пересекает координатные оси в начале координат. Других точек пересечения с осями координат нет.
3) y(-x)=-y(x), так что функция является нечётной и потому её можно исследовать только при x≥0.
4) Функция непрерывна на всей числовой оси. lim y при x⇒+∞=0. Таким образом, ось ОХ является горизонтальной асимптотой. Других асимптот нет.
5) y'=(-8*(x²+4)+8x*2x)/(x²+4)²=(8x²-32)/(x²+4)²=8*(x²-4)/(x²+4)², откуда видно, что , т.е. производная обращается в 0 при x=2 и при x=-2. При x<-2 y'>0, при -2<x<2 y'<0, при x>2 y'>0. Отсюда ясно, что точка x=-2 есть точка максимума, равного y(-2)=16/(4+4)=2, а точка x=2 есть точка минимума, равного y(2)=-16/(4+4)=-2. Эти значения одновременно являются соответственно наибольшим и наименьшим значениями функции на всей области определения.