Задания по комбинаторике
1. Найти число размещений из 10 элементов по 4.
2. Составить всевозможные перестановки и посчитать их число: а) 5, 6; б) 4,5,6.
3. Вычислить значение: а) 5! + 6!; б) 52!/50!
4. Вычислить: а) С1513 ; б) С64 + С50 .
5. Из урны, в которой 5 белых и 3 чёрных, вынимают 1 шар. Найти вероятность того, что шар окажется чёрным.
6. Из урны, в которой 12 белых и 8 чёрных, вынимают наудачу, 2 шар. Какова вероятность того, что оба шара окажутся чёрными?
7. В партии из 18 деталей находятся 4 бракованных. Наугад выбирают 5 деталей. Найти вероятность того, что из этих 5 деталей две окажутся бракованными.
8. В ящике в случайном порядке разложены 20 деталей, при чём 5 из них стандартные. Рабочий берёт три наудачу. Найти вероятность того, что по крайней мере одна из взятых деталей окажется стандартной (событие А).
9. Найти вероятность того, что наудачу взятое двузначное число окажется кратным либо 3, либо 5, либо тому и другому одновременно.
ОДЗ: 21 + 4x - x² > 0
21 + 4x - x² ≠ 1
7 - x > 0
x + 3 > 0
x + 3 ≠ 1
21 + 4x - x² > 0
x² - 4x - 21 < 0
x² - 4x - 21 = 0
По теореме Виета: x₁ = -3, x₂ = 7.
x² - 4x - 21 < 0
x ∈ (-3; 7)
21 + 4x - x² ≠ 1
x² - 4x - 20 ≠ 0
D = 16 + 80 = 96
7 - x > 0
x < 7
x + 3 > 0
x > -3
x + 3 ≠ 1
x ≠ -2
Окончательно, ОДЗ: x ∈ (-3; ) U (; -2) U (-2; ) U (; 7).
Решаем само неравенство:
Замена:
t ≠ 1
t ≠ -1
Делаем обратную замену:
Учитывая ОДЗ, окончательный ответ: x ∈ (-3; ) U (; -2) U (-2; 2) U (2; ) U (; 7).
ОДЗ: 21 + 4x - x² > 0
21 + 4x - x² ≠ 1
7 - x > 0
x + 3 > 0
x + 3 ≠ 1
21 + 4x - x² > 0
x² - 4x - 21 < 0
x² - 4x - 21 = 0
По теореме Виета: x₁ = -3, x₂ = 7.
x² - 4x - 21 < 0
x ∈ (-3; 7)
21 + 4x - x² ≠ 1
x² - 4x - 20 ≠ 0
D = 16 + 80 = 96
7 - x > 0
x < 7
x + 3 > 0
x > -3
x + 3 ≠ 1
x ≠ -2
Окончательно, ОДЗ: x ∈ (-3; ) U (; -2) U (-2; ) U (; 7).
Решаем само неравенство:
Замена:
t ≠ 1
t ≠ -1
Делаем обратную замену:
Учитывая ОДЗ, окончательный ответ: x ∈ (-3; ) U (; -2) U (-2; 2) U (2; ) U (; 7).