Задано алгебраическое выражение: 3+54−2. Выберите значение , при котором это алгебраическое выражение принимает наибольшее значение среди перечисленных вариантов. =5 =2 =3 =1 =0
Если x1 и x2 – корни квадратного уравнения a·x2+b·x+c=0, то сумма корней равна отношению коэффициентов b и a, взятому с противоположным знаком, а произведение корней равно отношению коэффициентов c и a, то есть, дано: х2+рх+ф=0 м и н некоторые числа м+н=-р м*н=ф док-ть: м и н корни квадратного уравнения док-во: х2+рх+ф=0 х2-(м+н) *х+м*н=0 х2-мх-нх+м*н=0 х (х-н) -м (х-н) =0 (х-м) (х-н) =0 х-м=0 х-н=0 х=м х=н чтд
Человек в комментариях, похоже, прав. Так как мы тянем карточки с равной вероятностью, то можно считать нашу вероятность по формуле:
где - количество благоприятных исходов, - количество всех исходов.
Но здесь каждому благоприятному исходу соответствует неблагоприятный (просто изменим порядок карточек). Поэтому всех исходов в два раза больше, чем благоприятных. Итак
Примечание: ответ таков, если считать, что первая карточка обратно не замешивается, а выбирается пара различных карточек. Иначе возможны случаи, когда вытащена два раза одна и та же карточка, но это уже другая история.
Так как мы тянем карточки с равной вероятностью, то можно считать нашу вероятность по формуле:
где - количество благоприятных исходов, - количество всех исходов.
Но здесь каждому благоприятному исходу соответствует неблагоприятный (просто изменим порядок карточек). Поэтому всех исходов в два раза больше, чем благоприятных. Итак
Примечание: ответ таков, если считать, что первая карточка обратно не замешивается, а выбирается пара различных карточек. Иначе возможны случаи, когда вытащена два раза одна и та же карточка, но это уже другая история.