Решение: Обозначим первоначальную массу олова в сплаве за (х) кг, тогда процентное содержание олова в сплаве составляет: х/16*100% При добавлении олова, масса сплава стала равной: 16+2=18(кг) а содержание олова в новом сплаве составило: (х+2) кг процентное содержание олова в новом сплаве равно: (х+2)/18*100% А так как в новом сплаве содержание олова на 5% больше чем в первоначальном сплаве, составим уравнение: (х+2)/18*100% - х/16*100%=5% 100*(х+2)/18 - 100*х/16=5 Приведём к общему знаменателю 144 8*100*(х+2) - 9*100*х=144*5 800х+1600 -900х=720 -100х=720-1600 -100х=-880 х=-880 : -100 х=8,8 (кг) -первоначальное количество олова в сплаве
ответ: Первоначальное количество олова в сплаве 8,8кг
4х²-2х+3=0
D=(-2)²-4×4×3=4-48=-44 D<0, уравнение не имеет корней
----------------------------------------------------------------------------
5х²+26х=24
5х²+26х-24=0
D=26²-4×5×(-24)=676+480=1156 D>0
х₁=
х₂=
х₁=0,8
х₂=-6
-------------------------------------------------------------------------
3х²-5х=0
D=5²-4×3×0=25-0=25 D>0
х₁=
х₂=
х₁=1,667
х₂=0
--------------------------------------------------------------------
6-2х²=0
-2х²+6=0
D=0²-4×(-2)×6=0+48=48 D>0
х₁=
х₂=
х₁=-1,732
х₂=1,732
------------------------------------------------------------------
t²=35-2t
t²+2t-35=0
D=2²-4×1×(-35)=4+140=144
t₁=
t₂=
t₁=5
t₂=-7
Обозначим первоначальную массу олова в сплаве за (х) кг, тогда процентное содержание олова в сплаве составляет:
х/16*100%
При добавлении олова, масса сплава стала равной:
16+2=18(кг)
а содержание олова в новом сплаве составило:
(х+2) кг
процентное содержание олова в новом сплаве равно:
(х+2)/18*100%
А так как в новом сплаве содержание олова на 5% больше чем в первоначальном сплаве, составим уравнение:
(х+2)/18*100% - х/16*100%=5%
100*(х+2)/18 - 100*х/16=5 Приведём к общему знаменателю 144
8*100*(х+2) - 9*100*х=144*5
800х+1600 -900х=720
-100х=720-1600
-100х=-880
х=-880 : -100
х=8,8 (кг) -первоначальное количество олова в сплаве
ответ: Первоначальное количество олова в сплаве 8,8кг