S = P*r , где p _ полупериметр (сумма длин всех сторон поделенная на два). ⇒ r = S/p ; S =√p(p-a)(p-b)(p-c) ← (Площадь треугольника по формуле Герона) . В этой задаче p=(18+24+30)/2 =36 (см)
S =√p(p-a)(p-b)(p-c) =√(36*18*12*6)=√(36²*6²) =36*6 =216 ; r = 216/36=6
Но здесь гораздо проще S =a*b/2 =18*24/2 = 216 (Δ -прямо∠ный)
{4x+2y=9
Их первого уравнения выразим х.
2х-5у=6
2х=5у+6
х = 5у/2 + 6/2
х = 2,5у+3
Подставим х=2,5у+3 во второе уравнение и получим:
4·(2,5у+3) + 2у = 9
10у+12+2у = 9
12у = 9 - 12
12у = - 3
у = - 3 : 12
у = - 1/4 = - 0,25
Находим х, подставив у = - 0,25 в уравнение х = 2,5у+3.
х = 2,5·(-0,25) + 3
х= - 0,625 + 3
х = 2,375
Проверка х = 2,375 и у = - 0,25 для первого уравнения:
2 · 2,375 -5·(-0,25)=6
4,75+1,25=6
6 = 6 - верное равенство.
Проверка х = 2,375 и у = - 0,25 для второго уравнения:
4 · 2,375+2 · (- 0,25) = 9
9,5 - 0,5 = 9
9 = 9 - верное равенство.
ответ: х = 2,375; у = - 0,25
Найдите площадь круга, вписанного в треугольник со сторонами 18 см, 24 см , 30 см.
" решение " S =πr² , где радиус вписанной окружности
a = 6*3 ; b=6*4 ; c =6*5 ⇒треугольник (пусть ABC) прямоугольный
и не только ( Египетский треугольник — прямоугольный треугольник с соотношением сторон 3:4:5.)
г = (a+b-c) /2 = (18 +24 -30)/2 см = 12/2 см = 6 см
S = πr² = 36π см² || 113 ,0971... см² , 113 ,1 см² ||
ответ: 36π см²
- - - - - - - - - - - - - - - - - - - - - - - - - - -
ОБЩИЙ СЛУЧАЙ ( думаю не вредит: r = S/p )
S = P*r , где p _ полупериметр (сумма длин всех сторон поделенная на два). ⇒ r = S/p ; S =√p(p-a)(p-b)(p-c) ← (Площадь треугольника по формуле Герона) . В этой задаче p=(18+24+30)/2 =36 (см)
S =√p(p-a)(p-b)(p-c) =√(36*18*12*6)=√(36²*6²) =36*6 =216 ; r = 216/36=6
Но здесь гораздо проще S =a*b/2 =18*24/2 = 216 (Δ -прямо∠ный)
r =216 /36 =6
( ΔA₁B₁C₁ со сторонами a₁=3 ; b₁ =4; c₁=5⇒r₁=(a₁ + b₁- c₁)/2=(3+4-5)/2 = 1
r = k*r₁ , где k =a/a₁ =6 коэффициент подобия ⇒ r =6*1 = 6
* * * S =k²* S₁ ; S₁ =a₁*b₁/2 =3*4/2 = 6 ⇒ S =6²*6 =216 * * *