Системы можно решать двумя (по крайней мере, мне известно лишь два сложением и подстановкой.
Ну, возьмем простенькое
у+х=6, х^2-2у+4=0;
через верхнее уравнение можем подставить в нижнее значение х в нижнее,
то есть:
х=6-у, (6-у)^2-2y+4=0;
дальше решаем нижнее полученное уравнение, выписывая его ниже
(6-у)^2-2y+4=0 36-12у+у^2-2у+4=0 y^2-14y+36=0
потом решаем через дискриминант таким образом мы получаем два корня (если нет никаких ограничений по заданию)
дальше значения у мы подставляем вот в это уравнение, чтобы выявить х то есть сюда х=6-у подставляем сначала первое значение у, а потом и второе считаем и находим два значения х и у (не забываем про знаки в системах! после первого уравнения -- запятая, после второго -- точка с зпт)
а если сложением, то тут обычно нужно еще и подделать одно из уравнений. я пользуюсь практически всегда методом подстановки
но если разбирать сложение, то тоже на простеньком примере
у-х=12 3у+х=22
складываем эти два уравнения и получаем 4у=34 х самоуничтожились, так как -х+х=0 теперь мы можем найти у у=34/4
а потом снова же подставляем это значение в любое уравнение системы и находим х.
3.
sin²φ+2cos²φ / sin²φ-cos²φ, если tgφ = 2
Разделим числитель и знаменатель на cos²φ, получим:
sin²φ+2cos²φ / sin²φ-cos²φ = sin²φ+2cos²φ/cos²φ / sin²φ -cos²φ/cos²φ = sin²φ/cos²φ + 2cos²φ/cos²φ / sin²φ/cos²φ - cos²φ/cos²φ = tg²φ + 2/tg²φ - 1 = 2²+2/2²-1 = 4+2/4-1 = 6/3 = 2
ответ: 2
4.
sinx × cosx + cos²x + 3sin²x = 3
sinx × cosx + cos²x + 3(1-cos²x) = 3
sinx × cosx + cos²x + 3 - 3cos²x = 3
sinx × cosx + cos²x + 3 - 3cos²x - 3 = 0
sinx × cosx + cos²x - 3cos²x = 0
sinx × cosx - 2cos²x = 0
cosx × (sinx - 2cosx) = 0
cosx = 0 или sinx - 2cosx = 0
x₁ = π/2 + πn, n∈Z sinx = 2cosx | : cosx
sinx/cosx = 2cosx/cosx
tgx = 2
x₂ = arctg 2 + πn, n∈Z
ответ: x₁ = π/2 + πn, n∈Z; x₂ = arctg 2 + πn, n∈Z
сложением и подстановкой.
Ну, возьмем простенькое
у+х=6,
х^2-2у+4=0;
через верхнее уравнение можем подставить в нижнее значение х в нижнее,
то есть:
х=6-у,
(6-у)^2-2y+4=0;
дальше решаем нижнее полученное уравнение, выписывая его ниже
(6-у)^2-2y+4=0
36-12у+у^2-2у+4=0
y^2-14y+36=0
потом решаем через дискриминант
таким образом мы получаем два корня (если нет никаких ограничений по заданию)
дальше значения у мы подставляем вот в это уравнение, чтобы выявить х
то есть
сюда х=6-у
подставляем сначала первое значение у, а потом и второе
считаем и находим два значения х и у
(не забываем про знаки в системах! после первого уравнения -- запятая, после второго -- точка с зпт)
а если сложением, то тут обычно нужно еще и подделать одно из уравнений. я пользуюсь практически всегда методом подстановки
но если разбирать сложение, то тоже на простеньком примере
у-х=12
3у+х=22
складываем эти два уравнения
и получаем
4у=34
х самоуничтожились, так как -х+х=0
теперь мы можем найти у
у=34/4
а потом снова же подставляем это значение в любое уравнение системы и находим х.