Пишу ход своих мыслей: Если скорость одного велосипедиста больше на 3 км/ч., но известно, что один велосипедист преодолевает этот путь на один час быстрее, тогда: 1) 36:4=9 км/ч - скорость велосипедиста преодолевшего путь на 1 час позже. 2) 9+3=12 км/ч -скорость велосипедиста преодолевшего путь на 1 час быстрее. 3) 36:12=3 ч. время велосипедиста преодолевшего путь на 1 час быстрее 4) 36:9=4 ч. время велосипедиста преодолевшего путь на 1 час позже ответ: 9 км/ч скорость первого велосипедиста, 12 км/ч скорость второго велосипедиста.
б) (b₁ + b₂ + b₃)/3 = 14/3, ⇒b₁ + b₂ + b₃ = 14, ⇒b₁ + b₁q + b₁q² = 14,⇒
⇒b₁ + b₁q² = 10
Получили систему двух уравнений с 2-мя переменными:
b₁q = 4
b₁ + b₁q² = 10
решаем:
b₁ + b₁q*q = 10, ⇒ b₁ + 4q = 10, ⇒b₁ = 10 - 4q
Это наша подстановка.
подставим в 1-е уравнение.
b₁q = 4, ⇒ (10 - 4q)*q = 4, ⇒ 10q -4q² = 4, ⇒ 4q² -10q +4 = 0,⇒
⇒ 2q² -5q +2 = 0. Решаем D = 25 -16 = 9
q = (5 +-3)/4
q₁= 2, q₁= 1/2
а) q₁= 2, ⇒b₁ = 10 - 4q = 10 - 8 = 2, S₅ = b₁(q⁵-1)/(q -1) = 2*31+1 = 62
б) q₂ = 1/2, ⇒b₁ = 10 -4q = 10 - 4*1/2 = 8, S₅ = 8(1/32 - 1)/(-1/2) = 15,5
1) 36:4=9 км/ч - скорость велосипедиста преодолевшего путь на 1 час позже.
2) 9+3=12 км/ч -скорость велосипедиста преодолевшего путь на 1 час быстрее.
3) 36:12=3 ч. время велосипедиста преодолевшего путь на 1 час быстрее
4) 36:9=4 ч. время велосипедиста преодолевшего путь на 1 час позже
ответ: 9 км/ч скорость первого велосипедиста, 12 км/ч скорость второго велосипедиста.