Надо, чтобы некоторые сомножители сократились. Если в знаменателе останется 7 и 11, то дробь будет бесконечной, значит числитель должен делится на 77. Т.е. числитель 77*х, где х -целое число, больше 1, но меньше 6160/77=80, т.е. таких дробей будет 79.
2. Всего правильных дробей 114-1/115,2/115...114/115 115 разложим на простые множители 115 = 5 · 23, значит две дроби сократимые - 5/115 и 23/115 114-2=112 дробей несократимы
6160 2 (6160 : 2 = 3080)
3080 2 (3080 : 2 = 1540)
1540 2 (1540 : 2 = 770)
770 2 (770 : 2 = 385)
385 5 (385 : 5 = 77)
77 7 (77 : 7 = 11)
11 11 (11 : 11 = 1)
1
6160 = 2 · 2 · 2 · 2 · 5 · 7 · 11
Надо, чтобы некоторые сомножители сократились. Если в знаменателе останется 7 и 11, то дробь будет бесконечной, значит числитель должен делится на 77.
Т.е. числитель 77*х, где х -целое число, больше 1, но меньше 6160/77=80, т.е. таких дробей будет 79.
2. Всего правильных дробей 114-1/115,2/115...114/115
115 разложим на простые множители 115 = 5 · 23, значит две дроби сократимые - 5/115 и 23/115
114-2=112 дробей несократимы
y = x³ - 3x² + 3x - 2,5
Найдём производную :
y' = (x³)' - 3(x²)' + 3(x)' - 2,5' = 3x² - 6x + 3
Приравняем производную к нулю, найдём критические точки :
3x² - 6x + 3 = 0
x² - 2x + 1 = 0
(x - 1)² = 0 ⇒ x = 1
Эта критическая точка принадлежит заданному отрезку. Найдём значения функции в критической точке и на концах отрезка и выберем из них наибольшее .
y(1) = 1³ - 3 * 1² + 3 * 1 - 2,5 = 1 - 3 + 3 - 2,5 = - 1,5
y(- 1) = (-1)³ - 3 * (- 1)² + 3 * (- 1) - 2,5 = - 1 - 3 - 3 - 2,5 = - 9,5
y(2) = 2³ - 3 * 2² + 3 * 2 - 2,5 = 8 - 12 + 6 - 2,5 = - 0,5
ответ : наибольшее значение функции равно - 0,5