ВG=51см
AH=54 см
2,22 м прута нужно для изготовления заказа
Объяснение:
В решении используем теорему Фалеса и теорему: Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
EF=FG=GH=5, а DС=СВ=ВА (по т Фалеса) ⇒
ЕН=3*5=15 см
AD=3*3=9 см
Проведем прямую, ║АD и точки пересечения с АH, BG и CF назовем соответственно А1, B1 и С1
т.к. прямая А1Е ║AD⇒CC1=ВВ1=АА1=45
⇒C1F=48-45=3
при пересечении двух прямых секущей соответственные углы равны ⇒ΔC1EF, ΔB1EG и ΔА1ЕН подобны.
Рассмотрим ΔB1EG: т.к. C1F делит стороны B1E и GE пополам (B1C1=C1E=GF=FE) ⇒С1F - средняя линия ΔB1EG⇒ В1G=C1F*2=6
Тогда BG=45+6=51 см
Найдем коэффициент подобия ΔС1EF и А1EH:
EH/EF=15/5=3⇒
А1Н=3*3=9 ⇒
АН=45+9=54 см
Итак, длина прута =сумме длин всех отрезков:
AD=9
EH=15
DE=45
CF=48
BG=51
AH=54
9+15+45+48+51+54=222 см или 2,22 м или 2 м 22 см.
Мастер в школе хорошо освоил геометрию.
см рисунок
ВG=51см
AH=54 см
2,22 м прута нужно для изготовления заказа
Объяснение:
В решении используем теорему Фалеса и теорему: Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
EF=FG=GH=5, а DС=СВ=ВА (по т Фалеса) ⇒
ЕН=3*5=15 см
AD=3*3=9 см
Проведем прямую, ║АD и точки пересечения с АH, BG и CF назовем соответственно А1, B1 и С1
т.к. прямая А1Е ║AD⇒CC1=ВВ1=АА1=45
⇒C1F=48-45=3
при пересечении двух прямых секущей соответственные углы равны ⇒ΔC1EF, ΔB1EG и ΔА1ЕН подобны.
Рассмотрим ΔB1EG: т.к. C1F делит стороны B1E и GE пополам (B1C1=C1E=GF=FE) ⇒С1F - средняя линия ΔB1EG⇒ В1G=C1F*2=6
Тогда BG=45+6=51 см
Найдем коэффициент подобия ΔС1EF и А1EH:
EH/EF=15/5=3⇒
А1Н=3*3=9 ⇒
АН=45+9=54 см
Итак, длина прута =сумме длин всех отрезков:
AD=9
EH=15
DE=45
CF=48
BG=51
AH=54
9+15+45+48+51+54=222 см или 2,22 м или 2 м 22 см.
Мастер в школе хорошо освоил геометрию.
см рисунок
1,5 • 2⁴ - 3² = 15
1)2⁴ = 16
2)3² = 9
4)1,5 • 16 = 24
5)24 - 9 = 15
Предоставьте в виде степени выражения :
1)а7 • а4=а7+4=11
2)а7 : а4=а7-4 =а3
3)(а7)4=а7•4=а28
Преобразуйте выражения в одночлен стандартного вида :
1)-
2)-64а(в 6 степени)b( в 18 степени)
Предоставьте в виде многочлена стандартного вида выражения :
5А²-2А-3)-(2А²+2А-5)=
=5А²-2А-3-2А²-2А+5=
=3А²-4А+2
Упростить выражения :
81х5у
81х5=405
405у
Вместо звёздочки запишите такой многочлен чтобы образовалось тождество :
5х² -3ху -у²) - (4х²-у²)=5х² -3ху -у² -4х²+у²=х² -3ху
Докажите что значение выражения (14n+19)-(8n-5) кратко 6 при любом натуральном значении n :
14n+19)-(8n-5)= 6n+24 = 6*(n+8) - кратно 6.
Известно что 4а3b=-5 найдите значения выражения :
1) Преобразуем выражение следующим образом:
-8a^3b = -2 * 4a^3b;
Подставим заданное значение 4a^3b = -5 в преобразованное выражение.
Если 4a^3b = -5, тогда -2 * 4a^3b = -2 * (-5) = 10;
2) Преобразуем выражение следующим образом:
4a^6b^2 = 4 * (a^3b) ^ 2;
Найдем из заданного равенства 4a^3b = -5 значение a^3b;
a^3b = -5 : 4;
a^3b = -5/4;
Подставим найденное значение a^3b = -1,25 в преобразованное выражение.
Если a^3b = -5/4, тогда 4 * (a^3b) ^ 2 = 4 * (-5/4) ^ 2 = 4 * 25/16 = 25/4 = 6,25;