|x|=-x пусть х>0 значит правая часть уравнения точно отрицательная (-х<0), а с лева модуль, который всегда неорицательный, значит при х>0 нет решений
пусть x≤0, значит справа число неотрицательное (-x≥0) слева при раскрытии модуля меняем знак, значит исх уравнение -x = -x - тождество значит уравнение верно при всех неположительных икс (т.е. при х≤0)
( x / |x| ) <= 1 ОДЗ |x|≠0 ⇔ x≠0 здесь модуль положельное число,умножаем обе части на него (знак неравенствоа поэтому неменяем)
x≤|x| пусть x≥0, ⇒ модуль можно просто опустить x≤x верно при всех икс, т.е. на рассматриваемом промежутке x≥0 пусть х<0, при раскрытии модуля меняем знак x≤-x т.к. слева число отриц., а справа положительное, значит неравенство верно при всех х ответ х∈(-∞,0)U(0,+∞)
2) Найти значение производной f(x) =x³ в точке с абциссой x0=1.
Решение:
f'(x) =(x³)' =3x²
при х=1
f'(1) =3*1² =3
ответ: 3
3) Найдите угловой коэффициент касательной, проведённый к графику функции f(x)=3x³+2x-5 в его точке с абциссой х0=2.
Решение: Угловой коэффициент касательной к графику функции в точке хо равен производной функции в точке хо. Найдем производную. f'(x)=(3x³+2x-5)'=(3x³)'+(2x)'-(5)' =3*3x² +2-0 =9x²+2 Найдем значение производной в точке хо f'(2) = 9*2²+2 =36+2=38
ответ: 38
4) Найдите промежутки возрастания функции f(x)=-3x²-36x.
Найдем критические точки приравняв производную к нулю
f'(x)=0 -6x-36 =0 6x=-36 x=-6 На числовой прямой отобразим эту точку и определим знаки производной по методу подстановки. Например при х=0 f'(0) =-36<0 + 0 - -----------!----------- -6
Функция возрастает на промежутке (-∞;-6) так как производная больше нуля
Иначе можно определить интервал возрастания сразу решив неравенство f'(x)>0 -6x-36>0 6x+36<0 6x<-36 x<-6 ответ: (-∞;-6)
пусть х>0 значит правая часть уравнения точно отрицательная (-х<0), а с лева модуль, который всегда неорицательный, значит при х>0 нет решений
пусть x≤0, значит справа число неотрицательное (-x≥0)
слева при раскрытии модуля меняем знак, значит исх уравнение
-x = -x - тождество
значит уравнение верно при всех неположительных икс (т.е. при х≤0)
( x / |x| ) <= 1
ОДЗ |x|≠0 ⇔ x≠0
здесь модуль положельное число,умножаем обе части на него (знак неравенствоа поэтому неменяем)
x≤|x|
пусть x≥0, ⇒ модуль можно просто опустить
x≤x верно при всех икс, т.е. на рассматриваемом промежутке x≥0
пусть х<0, при раскрытии модуля меняем знак
x≤-x
т.к. слева число отриц., а справа положительное, значит неравенство верно при всех х
ответ х∈(-∞,0)U(0,+∞)
Решение:
y'=(cos x)' = -sinx;
y'=(tg x)'=.
ответ: -sinx;
2. f(x)= 2x²+tg x ; f(x)= 4cos x+3
Решение:
f'(x)= (2x²+tg x)' = (2x²)'+(tg x)' =4x+
f'(x)= (4cos x+3)' = (4cos x)' +(3)' = -4sinx+0 =-4sinx
ответ: 4x+ ; -4sinx
2) Найти значение производной f(x) =x³ в точке с абциссой x0=1.
Решение:
f'(x) =(x³)' =3x²
при х=1
f'(1) =3*1² =3
ответ: 3
3) Найдите угловой коэффициент касательной, проведённый к графику функции f(x)=3x³+2x-5 в его точке с абциссой х0=2.
Решение:
Угловой коэффициент касательной к графику функции в точке хо
равен производной функции в точке хо.
Найдем производную.
f'(x)=(3x³+2x-5)'=(3x³)'+(2x)'-(5)' =3*3x² +2-0 =9x²+2
Найдем значение производной в точке хо
f'(2) = 9*2²+2 =36+2=38
ответ: 38
4) Найдите промежутки возрастания функции f(x)=-3x²-36x.
Решение:
Найдем производную функции
f'(x)=(-3x²-36x)' =(-3x²)'-(36x)' =-3*2x - 36 =-6x-36
Найдем критические точки приравняв производную к нулю
f'(x)=0
-6x-36 =0
6x=-36
x=-6
На числовой прямой отобразим эту точку и определим знаки производной по методу подстановки. Например при х=0 f'(0) =-36<0
+ 0 -
-----------!-----------
-6
Функция возрастает на промежутке (-∞;-6) так как производная больше нуля
Иначе можно определить интервал возрастания сразу решив неравенство
f'(x)>0
-6x-36>0
6x+36<0
6x<-36
x<-6
ответ: (-∞;-6)