Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то треугольники равны.
Получается, бисектриса делит квадрат на два треугольника. Треугольники, на которые бисектриса делит квадрат являются прямоугольными, так как углы у квадрата прямые. По определению у квадрата все стороны равны, то есть катеты треугольников тоже будут равны. + углы между сторонами треугольника тоже равны, они 90 градусов. Получается, по первому признаку треугольники, на которые бисектриса делит квадрат равны. А так как треугольники равны, то углы у них тоже равны. Поэтому, угол 1=2, 3=4.
Объяснение:
Первый признак равенства треугольников:
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то треугольники равны.
Получается, бисектриса делит квадрат на два треугольника. Треугольники, на которые бисектриса делит квадрат являются прямоугольными, так как углы у квадрата прямые. По определению у квадрата все стороны равны, то есть катеты треугольников тоже будут равны. + углы между сторонами треугольника тоже равны, они 90 градусов. Получается, по первому признаку треугольники, на которые бисектриса делит квадрат равны. А так как треугольники равны, то углы у них тоже равны. Поэтому, угол 1=2, 3=4.
27
Объяснение:
Идея такая у меня:
16*2 = 32 всего мест.
Свободных максимум 5, минимум 0.
значит от 27 до 32 человек в классе.
Если приняли в конкурсе 1/3, то должно делиться на 3 кол-во учеников,
а это 27 или 30.
Треть от каждого это 9 и 10.
Пойдем по дипломам: пусть x человек получили по 2 диплома.
Значит это 2x дипломов. Пусть всего y дипломов, тогда
2x = 0.2y
x = y/10 общее кол-во дипломов должно быть кратно 10
тут видится, что учеников принимало 9, один получил 2 диплома, а всего дипломов 10 2/10 = 0,2
Всего в классе 27 чел.
А другой вариант проверку не проходит