В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
AZINO7777
AZINO7777
04.01.2022 18:09 •  Алгебра

Задайте формулою лінійну функцію графіком якої є пряма що проходить через точку А (2;5) і паралельна графіку функції у =2,5х ! ​

Показать ответ
Ответ:
vika111192
vika111192
05.06.2022 09:25
Тут коэффициент k — угол наклона прямой, а точнее тангенс угла наклона. Так как функция убывает, то коэффициент k<0.

По клеточкам можно определить: из прямоугольного равнобедренного треугольника его углы будут равны 45°, 45° и 90°.

Так как угол развёрнутый, то угол наклона будет равен 180° - 45° = 135°.

Следовательно Тут коэффициент b показывает пересечение графика функции с осью ординат (y).

Из графика он равен 2.

Возьмём любую удобную точку из графика (кроме x = 0; \ y = 2):

x = 2; \ y = 0

Подставим их в формулу функции и получим:

0 = 2k + 2; \ \\2k = -2; \ \\k = -1

ответ: -1.

0,0(0 оценок)
Ответ:
missisruso
missisruso
30.01.2022 05:01
Решим уравнение xy+z^2=1 относительно z:

z=\pm \sqrt{1-xy},xy \leq 1

для решения в целых числах необходимо, что бы подкоренное выражение было полным квадратом:

\left \{ {{1-xy=k^2,k\in Z} \atop {xy \leq 1}} \right.

используем условие, что x+y=2;y=2-x

\left \{ {{1-x(2-x)=k^2,k\in Z} \atop {x(2-x) \leq 1}} \right.;&#10;\left \{ {{1-2x+x^2=k^2,k\in Z} \atop {2x-x^2 \leq 1}} \right.;&#10;\left \{ {{(x-1)^2=k^2,k\in Z} \atop {0 \leq 1-2x+x^2}} \right.;

\left \{ {{(x-1)^2-k^2=0,k\in Z} \atop {0 \leq (x-1)^2}} \right.;

второе условие системы выполняется всегда

получили: (x-1-k)(x-1+k)=0,k\in Z

x=1+k,or,x=1-k,k\in Z

\left \{ {{x=1+k} \atop {y=2-(1+k)}} \atop {z=\pm k } \right.,or, \left \{ {{x=1-k} \atop {y=2-(1-k)}} \atop {z=\pm k } \right.

\left \{ {{x=1+k} \atop {y=1-k}} \atop {z=\pm k } \right.,or, \left \{ {{x=1-k} \atop {y=1+k)}} \atop {z=\pm k } \right.

ответ: (1+k;1-k;k); (1+k;1-k;-k); (1-k;1+k;k); (1-k;1+k;-k); где k\in Z

Докажем, что \frac{a+b+c}{3} \geq \sqrt[3]{abc};a\ \textgreater \ 0;b\ \textgreater \ 0;c\ \textgreater \ 0

Пусть a=x^3b=y^3c=z^3

тогда наше неравенство равносильно неравенству (его нам тепер нужно доказывать):
x^3+y^3+z^3 \geq 3xyz

x^3+y^3+z^3-3xyz \geq 0

предлагаю разложить на множители уже самому
x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-xz-yz)

x+y+z\ \textgreater \ 0 по условию

докажем, что x^2+y^2+z^2 \geq xy+xz+yz

для это рассмотрим верное неравенство:
(x-y)^2+(x-z)^2+(y-z)^2 \geq 0

x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2 \geq 0

2x^2+2y^2+2z^2-2xy-2xz-2yz \geq 0

x^2+y^2+z^2-xy-xz-yz \geq 0

x^2+y^2+z^2 \geq xy+xz+yz

мы доказали, что \frac{a+b+c}{3} \geq \sqrt[3]{abc};a\ \textgreater \ 0;b\ \textgreater \ 0;c\ \textgreater \ 0

тогда a+b+c \geq 3\sqrt[3]{abc}=3* \sqrt[3]{1}=3

неравенство доказано
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота