частные производные dz/dx=2x+y+1=0 и dz/dy=x+2y+1=0 Решая систему получим y=-2x-1 x+2(-2x-1)+1=0 x-4x-2+1=0 -3x=1 x=-1/3 y=-1/3 точка возможного экстремума (-1/3;-1/3) Если в этой точке выполнено условие f''xx × f''yy – (f''x y)² > 0, то точка (-1/3;-1/3) является точкой экстремума причем точкой максимума, если f''xx < 0, и точкой минимума, если f''xx > 0. где։ f''xx вторая производная по x f''yy вторая производная по y (f''x y)² производная по x, потом по y
Пусть за хч-первая наполнит,а х+6 ч-наполнит вторая труба.1/х-производительность первой трубы в 1час,а 1/(х+6) -производительность второй.а 1/4 ч общая производительность за 1час.Составим уравнение:1/х+1/(х+6)=1/4 - приводим к общему знаменателю-4*х*(х+6)4х+4х+24=х²+6хх²-2х-24=0Квадратное уравнение, решаем относительно x:Ищем дискриминант: D=(-2)²-4*1*(-24)=4+96=√100=10;Дискриминант больше 0, уравнение имеет 2 корня: x₁=(10+2)/2=12/2=6; x₂=(-10+2)/2=-8/2=-4 - этот ответ не подходит,т.к. время не может быть отрицательное.Значит первая труба в отдельности может наполнить бассейн за 6ч,а вторая 6+6=за 12часов.
функция определена
частные производные dz/dx=2x+y+1=0 и dz/dy=x+2y+1=0
Решая систему получим y=-2x-1 x+2(-2x-1)+1=0
x-4x-2+1=0
-3x=1
x=-1/3 y=-1/3 точка возможного экстремума (-1/3;-1/3)
Если в этой точке выполнено условие
f''xx × f''yy – (f''x y)² > 0, то точка (-1/3;-1/3) является точкой экстремума причем точкой максимума, если f''xx < 0, и точкой минимума, если f''xx > 0. где։
f''xx вторая производная по x
f''yy вторая производная по y
(f''x y)² производная по x, потом по y
f''xx=(2x+y+1)'=2
f''yy=(x+2y+1)'=2
f''x y=(2x+y+1)'=1
очевидно что 2*2-1²>0 и f''xx >0
значит точка (-1/3;-1/3) является точкой минимума
D=(-2)²-4*1*(-24)=4+96=√100=10;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(10+2)/2=12/2=6;
x₂=(-10+2)/2=-8/2=-4 - этот ответ не подходит,т.к. время не может быть отрицательное.Значит первая труба в отдельности может наполнить бассейн за 6ч,а вторая 6+6=за 12часов.