В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Sonya2308
Sonya2308
03.02.2020 17:31 •  Алгебра

Задайте линейную функцию y=kx формулой,если известно,что ее график параллелен прямой -3x + y - 4 = 0 . определите,возрастает или убывает заданная вами линейная функция.

Показать ответ
Ответ:
cosovanovcostya
cosovanovcostya
11.07.2020 15:20
Найти производную функции, приравнять её к нулю, проверить, попадают ли нули производной в область определения функции. Найти промежутки знакопостоянства производной, то есть узнать знаки производной на всей области определения. Там, где знак производной меняется с - на + и функция опредеделена, имеем точку минимума, соответственно значение функции в этой точке будет минимальным значением функции, а там, где с + на -, соответственно точку максимума. Если поиск наименьшего значения осуществляется на отрезке, и на этом отрезке производная имеет точку максимума, то наименьшее значение функции будет искаться на краях отрезка. Если поиск наименьшего значения осуществляется на отрезке, и на этом отрезке производная имеет точку минимума, то наименьшее значение функции будет достигаться в этой точке.  В некоторых случаях, путём рассуждений, можно найти минимальное значение не используя производную. Например, если у нас квадратичная функция с ветвями вверх, то наименьшее значение функции будет достигаться в вершине.параболы. Пример во вложении.
Как найти наименьшее значение функции
0,0(0 оценок)
Ответ:
katy994
katy994
13.07.2022 23:58
1) Находим область определения функции.
Подкоренное выражение должно быть неотрицательным (≥0)
\left \{ {{x \geq 0} \atop {5- x^{2} \geq 0}} \right.

[0;+∞) U [-√5;√5]⇒x∈[0;√5]
Находим производную
y`=( \sqrt{5- x^{2} })`+( \sqrt{x})`= \frac{1}{2 \sqrt{5- x^{2} } }\cdot (5- x^{2} )`+ \frac{1}{2 \sqrt{x} } = \\ = \frac{1}{2 \sqrt{5- x^{2} } }\cdot (-2 x})+ \frac{1}{2 \sqrt{x} } = \\ =\frac{-2x \sqrt{x} + \sqrt{5- x^{2} } }{2 \sqrt{5- x^{2} } \\sqrt{ x}}
Приравниваем к нулю и находим точки, в которых производная обращается в нуль. Это точки возможных экстремумов.
Для того чтобы узнать есть в них  экстремум или нет, надо воспользоваться достаточным условием: если при переходе через такую точку производная меняет знак с + на -, то это точка максимума, если с - на +, то минимума

y`=0
Дробь равна нулю, когда числитель равен нулю, а знаменатель отличен от нуля.
\left \{ {{-2x \sqrt{x}+ \sqrt{5- x^{2} )} =0} \atop { \sqrt{x} \neq 0;\sqrt{5- x^{2} \neq 0} }} \right.
x≠0
x≠√5
Поэтому исследуем функцию на (0;√5)
√(5-x²)=2x√x
5-x²=4x³
(x-1)(4x²+5x+5)=0
x=1
Считаем у`(2)=(2·2+√(5-4))/2√(5-4)·√2<0
Ставим знак производной минус на (1;√5)
             +                 -
0----------------------------------------(√5)
                         1
                     max

в точке х=1  максимум, так как производная меняет знак с + на -
у(1)=√1 +√5-1=1+2=3

2) аналогично

Находим область определения функции.
Подкоренное выражение должно быть неотрицательным (≥0)
\left \{ {{-x \geq 0} \atop {5- x^{2} \geq 0}} \right.

(-∞;0] U [-√5;√5]⇒x∈[-√5;0]
Находим производную
y`=( \sqrt{-x})`+( \sqrt{5- x^{2} })`= + \frac{1}{2 \sqrt{-x} }\cdot (-x)`+ \frac{1}{2 \sqrt{5- x^{2} } }\cdot (5- x^{2} )`= \\ =\frac{-1}{2 \sqrt{-x} } + \frac{1}{2 \sqrt{5- x^{2} } }\cdot (-2 x}) = \\ = \frac{- \sqrt{5- x^{2} }-2x \sqrt{-x} }{2 \sqrt{5- x^{2} }\sqrt{ -x}}

Приравниваем к нулю и находим точки, в которых производная обращается в нуль. Это точки возможных экстремумов.
Для того чтобы узнать есть в них  экстремум или нет, надо воспользоваться достаточным условием: если при переходе через такую точку производная меняет знак с + на -, то это точка максимума, если с - на +, то минимума

y`=0
Дробь равна нулю, когда числитель равен нулю, а знаменатель отличен от нуля.
\left \{ {{-2x \sqrt{-x}- \sqrt{5- x^{2} )} =0} \atop { \sqrt{x} \neq 0;\sqrt{5- x^{2} \neq 0} }} \right.
x≠0
x≠ -√5
Поэтому исследуем функцию на (-√5;0)
√(5-x²)=-2x√-x
5-x²=4x²·(-х)
4х³-х²+5=0
(x+1)(4x²-5x+5)=0
x=-1-  точка возможного экстремума

находим знак производной в точке х=-2
у`(-2)=(-(√5-4)+4√2 )/2√(5-4)√2>0
                 +                -
(-√5)------------------(-1)----------(0)
                     max

у(-1)=√1+√(5-1)=1+2=3- наибольшее
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота