В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
tatyanakarp
tatyanakarp
27.03.2022 18:47 •  Алгебра

Задумано двузначное число. к нему справа приписывают сумму его цифр. затем справа приписывают сумму двух последних цифр и т.д., пока не получится шестизначное число.известно что полученное шестизначное число не содержит цифры "1", а исходное двузначное кратно трем. найти исходное двузначное число и полученное шестизначное число.

Показать ответ
Ответ:
students17
students17
02.10.2020 17:30
  Положим что наше число 
  10x+y 
 Тогда если  правильно понял задачу ,то 
 10^5x+10^4y + (x+y)*10^3 + (2y+x)*10^2 + (3y+2x)*10 + 5y+3x \\
 101123x+11235y \\
 \\

 отсюда x+y должно делится на  3  
 Так же должно  
  2y+x\ \textless \ 10\\ 
 3y+2x\ \textless \ 10 \\
 x+y\ \textless \ 10 
      0\ \textless \ x\ \textless \ 10 , \ \ y\ \textless \ \frac{ 10-3x}{5} \\
 
 
 Откуда подбирая получим 
            x=3 ; y = 0 
          30 ; 303369
     
0,0(0 оценок)
Ответ:
DashaShitova2006
DashaShitova2006
02.10.2020 17:30
Цифры шестизначного числа a, b, a+b, a+2b, 2a+3b, 3a+5b (считая от старшего к младшему разряду). очевидно, что сумма цифр a+b двузначного числа однозначное число, как и a+2b, 2a+3b, 3a+5b⇒т.к. 3a+5b<10, то подходят решения (1;1), (2;0), (3;0). но поскольку сумма a+b кратна 3, то подходит решение 30⇒шестизначное число 303369.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота