Задумано натуральное трехзначное число. если поменять местами крайние цифры числа, то полученное число будет на 396 меньше исходного. если поменять местами две первые цифры числа, то число будет на 180 больше исходного. найдите исходное число, если сумма всех его цифр равна 13.
100X+10Y+Z-(100Z+10Y+Х)=396
100Y+10Х+Z-(100Х+10Y+Z)=180
X+Y+Z=13
Мы получили систему из трех неизвестных и трех уравнений, ее можно решить.
100X+10Y+Z-100Z-10Y-Х=396
100Y+10Х+Z-100Х-10Y-Z=180
X+Y+Z=13
99X-99Z=396
90Y-90Х=180
X+Y+Z=13
X-Z=4 выразим Z=Х-4
Y-Х=2 выразим Y=Х+2
X+Y+Z=13
Подставим Z и Y в последнее выражение
Х+Х+2+Х-4=13,
3Х=15, Х=5
Z=Х-4=5-4=1
Y=Х+2=5+2=7
Исходное число 571.