Закон движения точки по прямой задаётся формулой s(t)=5t+2, где t — время (в секундах), s(t) — отклонение точки в момент времени t (в метрах) от начального положения. Определи среднюю скорость движения точки с момента t1=0,5c. до момента t2=4c.
Условия определения логарифмической функции: 1) - логарифмируемое выражение должно быть положительным, 2) - знаменатель дроби не должен быть равен 0.
1) Чтобы логарифмируемое выражение было положительным, надо, чтобы числитель и знаменатель были одновременно или положительными или отрицательными: 2х + 1 >0 x > -1/2 x - 1 > 0 x > 1 Первое решение х > 1
2х + 1 <0 x < -1/2 x - 1< 0 x < 1 Второе решение х < - 1/2
2) Чтобы знаменатель дроби не был равен 0: х - 1 ≠ 0 х ≠ 1.
Раскрываем знак модуля: 1) если х≥0, то | x| = x если y≥0, то | y| = y Уравнение принимает вид : (x+y-1)(x+y+1)=0 х+у-1=0 или х+у+1=0 у=-х+1 или у=-х-1 В первой четверти ( х≥0; у≥0) строим прямую у=-х+1, прямая у=-х-1 не проходит через первую четверть.
2)если х<0, то | x| =- x если y≥0, то | y| = y Уравнение принимает вид : (-x+y-1)(x+y+1)=0 -х+у-1=0 или х+у+1=0 у=х+1 или у=-х-1 Во второй четверти ( х<0; у≥0) строим две прямые у=х+1 или у=-х-1
3)если х<0, то | x| =- x если y<0, то | y| =- y Уравнение принимает вид : (-x+y-1)(x-y+1)=0 -х+у-1=0 или х-у+1=0 у=х+1 или у=х+1 В третьей четверти ( х<0; у<0) нет графика функции, так как прямая у=х+1 не расположена в 3 ей четверти
4) если х≥0, то | x| = x если y<0, то | y| =- y Уравнение принимает вид : (x+y-1)(x-y+1)=0 х+у-1=0 или х-у+1=0 у=-х+1 или у=х+1 В четвертой четверти ( х≥0; у<0) строим прямую у=-х+1, прямая у=x+1 не расположена в четвертой четверти. Тогда получится нужный график, см. рисунок
1) - логарифмируемое выражение должно быть положительным,
2) - знаменатель дроби не должен быть равен 0.
1) Чтобы логарифмируемое выражение было положительным, надо, чтобы числитель и знаменатель были одновременно или положительными или отрицательными:
2х + 1 >0 x > -1/2
x - 1 > 0 x > 1 Первое решение х > 1
2х + 1 <0 x < -1/2
x - 1< 0 x < 1 Второе решение х < - 1/2
2) Чтобы знаменатель дроби не был равен 0: х - 1 ≠ 0 х ≠ 1.
ответ: -1/2 > x > 1
1) если х≥0, то | x| = x
если y≥0, то | y| = y
Уравнение принимает вид :
(x+y-1)(x+y+1)=0
х+у-1=0 или х+у+1=0
у=-х+1 или у=-х-1
В первой четверти ( х≥0; у≥0) строим прямую у=-х+1, прямая у=-х-1 не проходит через первую четверть.
2)если х<0, то | x| =- x
если y≥0, то | y| = y
Уравнение принимает вид :
(-x+y-1)(x+y+1)=0
-х+у-1=0 или х+у+1=0
у=х+1 или у=-х-1
Во второй четверти ( х<0; у≥0) строим две прямые у=х+1 или у=-х-1
3)если х<0, то | x| =- x
если y<0, то | y| =- y
Уравнение принимает вид :
(-x+y-1)(x-y+1)=0
-х+у-1=0 или х-у+1=0
у=х+1 или у=х+1
В третьей четверти ( х<0; у<0) нет графика функции, так как прямая у=х+1 не расположена в 3 ей четверти
4) если х≥0, то | x| = x
если y<0, то | y| =- y
Уравнение принимает вид :
(x+y-1)(x-y+1)=0
х+у-1=0 или х-у+1=0
у=-х+1 или у=х+1
В четвертой четверти ( х≥0; у<0) строим прямую у=-х+1, прямая у=x+1 не расположена в четвертой четверти.
Тогда получится нужный график, см. рисунок