Закон движения точки по прямой задаётся формулой s(t)=6t+2, где t — время (в секундах), s(t) — отклонение точки в момент времени t (в метрах) от начального положения. Определи среднюю скорость движения точки с момента t1=1,1c. до момента t2=3c
Вначале чертишь координатную плоскость. Затем слева от неё записываешь само выражение и выражаешь в нём у через х: х - 2у = 4 у = (х - 4) : 2 у = х - 2.
Теперь ниже составляешь таблицу, где в названиях строк указываешь "х" и "у" и показываешь зависимость х от у: вписав в строку "х" несколько (2-3, не больше) значений (желательно брать одно отрицательное и одно положительное, а также нуль) по выведенной ранее формуле находишь у. Выглядеть это будет примерно так: х 2 -2 0 у -1 -3 -2 Теперь находишь на координатной плоскости точки с заданными координатами: по оси абсцисс лежит х, по оси ординат - найденный у. Соединив полученные точки, и получишь график этой функции. Примечание: это должен быть не отрезок, а именно прямая, т.е. проходить она должна по всей координатной плоскости.
1) Область определения: x ∈ (-∞; ∞). 2) Четность-нечетность:
Т.к. и , то функция является функцией общего вида. 3) Точки пересечения с Ox. Решим исходное уравнение при y = 0. (метод решения: Виета-Кардано) Получим один корень: x = 0.148 - абсцисса точки пересечения графка с осью Ox. Координаты точки: (0.148; 0)
Точка пересечения с Oy. Найдем y, подставив в уравнение x = 0. Получим: y = -5. Координаты точки: (0, -5).
4) Так как функция кубическая, то точек экстремума не имеет.
5) Первая производная.
2. Вторая производная.
Находим корни уравнения. Для этого полученную функцию приравняем к нулю.
х - 2у = 4
у = (х - 4) : 2
у = х - 2.
Теперь ниже составляешь таблицу, где в названиях строк указываешь "х" и "у" и показываешь зависимость х от у: вписав в строку "х" несколько (2-3, не больше) значений (желательно брать одно отрицательное и одно положительное, а также нуль) по выведенной ранее формуле находишь у. Выглядеть это будет примерно так:
х 2 -2 0
у -1 -3 -2
Теперь находишь на координатной плоскости точки с заданными координатами: по оси абсцисс лежит х, по оси ординат - найденный у. Соединив полученные точки, и получишь график этой функции. Примечание: это должен быть не отрезок, а именно прямая, т.е. проходить она должна по всей координатной плоскости.
2) Четность-нечетность:
Т.к. и , то функция является функцией общего вида.
3) Точки пересечения с Ox. Решим исходное уравнение при y = 0. (метод решения: Виета-Кардано)
Получим один корень: x = 0.148 - абсцисса точки пересечения графка с осью Ox. Координаты точки: (0.148; 0)
Точка пересечения с Oy. Найдем y, подставив в уравнение x = 0. Получим: y = -5. Координаты точки: (0, -5).
4) Так как функция кубическая, то точек экстремума не имеет.
5) Первая производная.
2. Вторая производная.
Находим корни уравнения. Для этого полученную функцию приравняем к нулю.
Откуда точка перегиба:
x = 5/3
На промежутке: (-∞ ;5/3)
Значит, функция выпукла.
На промежутке (5/3; ∞)
Значит, функция вогнута.
6)
7(график в приложениях)
Как мог.. Работа объемная, конечно)