Закон прямолінійного руху точки визначається функцією s(t) = 4 + 12t – 0, 25t^2 (м), t — час (c). Знайдіть швидкість руху точки в момент часу t = 8 (c). У який момент часу t точка зупиниться?
1.Функция -отношение между элементами, при котором изменение в одном элементе влечёт изменение в другом.Область определения функции-множество, на котором задаётся функция.
2. Начальная функция это y0. Неопределенный интеграл-это совокупность всех первообразных данной функции.
Свойства неопределенного интеграла
1)Производная неопределенного интеграла равна подынтегральной функции; дифференциал от неопределенного интеграла равен подынтегральному выражению, т.е.
2)Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной, т.е.
3)Постоянный множитель можно вынести из-под знака интеграла, т.е. если то
4)Неопределенный интеграл от алгебраической суммы двух функций равен алгебраической сумме интегралов от этих функций в отдельности, т.е.
Интегрирование- название, данное ряду приемов, используемых для вычисления различных ИНТЕГРАЛОВ.
Решение: 1) пусть х кг - вес третьего слитка, у кг - вес меди в третьем слитке. по условию в 1-ом слитке 30% меди, тогда 5·0,3 = 1,5 (кг) - чистой меди в первом слитке. по условию во 2-ом слитке тоже 30% меди, тогда 3·0,3 = 0,9 (кг) - чистой меди во втором слитке. 2) если первый слиток сплавили с третьим, то вес получившегося слитка равен (5 + х) кг, а количество в нём меди - (1,5 + у) кг. по условию содержание меди при этом получилось равным 56%. составим уравнение:3) если второй слиток сплавить с третьим, то вес получившегося слитка равен (3 + х) кг, а количество в нём меди - (0,9 + у) кг. по условию содержание меди при этом получилось равным 60%. составим уравнение:4) составим и решим систему уравнений:сложив почленно обе части уравнения, получим, что 10 кг - вес третьего слитка6,9 кг меди в третьем слитке 5) найдём процентное содержание меди в третьем слитке: % меди в третьем слитке. ответ: 69 %.
Объяснение:
1.Функция -отношение между элементами, при котором изменение в одном элементе влечёт изменение в другом.Область определения функции-множество, на котором задаётся функция.
2. Начальная функция это y0. Неопределенный интеграл-это совокупность всех первообразных данной функции.
Свойства неопределенного интеграла
1)Производная неопределенного интеграла равна подынтегральной функции; дифференциал от неопределенного интеграла равен подынтегральному выражению, т.е.
2)Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной, т.е.
3)Постоянный множитель можно вынести из-под знака интеграла, т.е. если то
4)Неопределенный интеграл от алгебраической суммы двух функций равен алгебраической сумме интегралов от этих функций в отдельности, т.е.
Интегрирование- название, данное ряду приемов, используемых для вычисления различных ИНТЕГРАЛОВ.
3.