Точка пересечения с осью oy=с(то есть точка пересечения с осью у, будет равна коэффициенту с) тогда точка пересечения с осью y будет точка (0;5). Точки пересечения с осью х, их по другому еще называют нули функции. Для того чтобы найти точки пересечения с осью х, точно все выражение приравнять к нулю.(или другими словами у=0) Тогда : x^2-6x+5=0 (Решаем через дискриминант) Д=(b)^2-4ac Д=36-20=16; Д>0,то будет 2 корня. x1= (6+4)/2=10/2=5 x2=(6-4)/2=2/2=1 Тогда точки пересечения с осью х будут точки: х1=1, x2=5 ответ: с осью оу точка: (0;5) с осью х точки: (1;0) и (5;0)
Заметим, что OM ⊥ AB (так как OM - это расстояние от т. О до прямой AB - длина перпендикуляра из точки О к прямой AB).
Пусть отрезок OM лежит на радиусе OC рассматриваемой окружности. Тогда OC, как радиус, перпендикулярный хорде, пересекает эту хорду ровно в ее середине: AM = BM.
Рассмотрим прямоугольные треугольники, равные по первому признаку (или же по двум катетам OM = OM и AM = BM): ΔAOM = ΔBOM.
тогда точка пересечения с осью y будет точка (0;5).
Точки пересечения с осью х, их по другому еще называют нули функции.
Для того чтобы найти точки пересечения с осью х, точно все выражение приравнять к нулю.(или другими словами у=0)
Тогда :
x^2-6x+5=0
(Решаем через дискриминант)
Д=(b)^2-4ac
Д=36-20=16; Д>0,то будет 2 корня.
x1= (6+4)/2=10/2=5
x2=(6-4)/2=2/2=1
Тогда точки пересечения с осью х будут точки:
х1=1, x2=5
ответ:
с осью оу точка: (0;5)
с осью х точки: (1;0) и (5;0)
Окружность с центром в т. O и D = 68. Хорда AB.
Расстояние OM = 30 от т. O до прямой AB.
Найти:AB - ?
Решение:Заметим, что OM ⊥ AB (так как OM - это расстояние от т. О до прямой AB - длина перпендикуляра из точки О к прямой AB).
Пусть отрезок OM лежит на радиусе OC рассматриваемой окружности. Тогда OC, как радиус, перпендикулярный хорде, пересекает эту хорду ровно в ее середине: AM = BM.
Рассмотрим прямоугольные треугольники, равные по первому признаку (или же по двум катетам OM = OM и AM = BM): ΔAOM = ΔBOM.
OA = OB = D / 2 = 68 / 2 = 34, как радиусы.
OM = 30, по условию.
Применим теорему Пифагора, например, к ΔAOM:
AM² + OM² = AO²
AM² = AO² - OM²
AM² = 34² - 30²
AM² = 256
AM = 16
Значит:
AB = AM + BM = AM + AM = 16 + 16 = 32.
Задача решена!
ответ: 32.