Замініть зірочку таким одночленом, щоб отриманий тричлен можна було подати у вигляді квадрата двочлена: 1) *-2by+y² 2) 9c²+12c+* 3) 64x²-*+81y² 4) *+30m³n²+9n⁴ 5) a⁴-0,8a⁶+* 6) *-ab+¼b² И можно подробнее
В знаменателе минусы уничтожаются (минус на минус дает плюс). 3x^2 - x + 3 ≠ 0 D = (-1)^2 - 4*3*3 = 1 - 36 < 0 - корней нет. 3x^2 - x + 3 > 0 при любом x. (x - 2)^2 > 0 при любом x, кроме x = 2, где (x - 2)^2 = 0 Поэтому x = 2 - это решение. Делим на всё это, а также сокращаем (x - 1). Но нужно помнить, что x = 2 - решение, а x = 1 - не решение.
Особые точки: x = -7 и x = 2/3 По методу интервалов берем любое число, например, 0
Неравенство выполнено, значит, интервал (-7; 2/3] подходит. Точка x = 1 в интервал не входит. ответ: x ∈ (-7; 2/3] U [2]
x₀ =3 _корень (3³ -2*3 -21 =0), значить многочлен x³ -2x - 21 делится на (x -3) без остатка (теорема Безу). Другой многочлен можно найти по схеме Горнера или применит деление уголком или ...
x³ -2x - 21 =0 ;
(x³ -3x²) +(3x² -9x) +(7x -21) =0 ;
x²(x -3) +3x(x -3) +7(x -3) =0 ;
(x-3)(x² +3x+7) =0 ; * * * [ x-3=0 ; x² +3x+7 =0 * * *
x² +3x+7 =0 не имеет действительных корней (D =3² - 4*7 = -19 < 0).
ответ : 3.
* * * * * * * *
x³ -2x - 21 = (x³ - 27) - (2x - 6 )=(x³ - 3³) -2 (x-3)=6 (x-3)(x² +3x+9) -2(x-3) =
(x-3)(x² +3x+9 -2) =(x-3)(x² +3x+7).
В знаменателе минусы уничтожаются (минус на минус дает плюс).
3x^2 - x + 3 ≠ 0
D = (-1)^2 - 4*3*3 = 1 - 36 < 0 - корней нет.
3x^2 - x + 3 > 0 при любом x.
(x - 2)^2 > 0 при любом x, кроме x = 2, где (x - 2)^2 = 0
Поэтому x = 2 - это решение.
Делим на всё это, а также сокращаем (x - 1).
Но нужно помнить, что x = 2 - решение, а x = 1 - не решение.
Особые точки: x = -7 и x = 2/3
По методу интервалов берем любое число, например, 0
Неравенство выполнено, значит, интервал (-7; 2/3] подходит.
Точка x = 1 в интервал не входит.
ответ: x ∈ (-7; 2/3] U [2]