Замість : AB + 2AO? 3
а) 85°;
6) 145°;
в) 95°;,
г) 35°.
ДАВС при повороті навколо точки А
на кут 60° відобразився на дАВ.С.
Знайдіть ZBAC, якщо ZB, AC = 85°.
4 Яка з фігур має лише 4 осі симетрії?
а) коло;
б) квадрат;
в) ромб;
г) прямокутник.
5 Точки A(-4; 6) i B(-2; 2) симетричні від- а) (-6; 8);
носно точки М. Знайдіть її координати. 6) (-3; 2);
в) (-3; 4);
г) (-1; 2).
6 Точки Рік симетричні відносно
прямої 1. Який знак слід поставити
замість *: PK * l?
а) II;
б) є;
в) 1;
г) =.
7 При паралельному перенесенні точ-
кa A(-3; 5) відобразилась на точки
а) (-2; 4);
в) (1; 1);
б) (-Л.
Объяснение:
Пусть x1, x2 - катеты, x3 - гипотенуза
Теорема Виета для кубического ур-я:
x1 + x2 + x3 = 12, отсюда x1 + x2 = 12 - x3
x1 * x2 * x3 = 60, отсюда x1 * x2 = 60/x3
По т. Пифагора
x3^2 = x1^2 + x2^2
(x1 + x2)^2 = (12 - x3)^2
(12 - x3)^2 = 144 - 24x3 + x3^2
x1^2 + x2^2 + 2x1*x2 = x3^2 +120/x3
x3^2 +120/x3 = 144 - 24x3 + x3^2
24x3 +120/x3 - 144 = 0 | *x3/24, где х3≠ 0. Мы можем это делать, т.к. x3 - не является корнем уравнения - 60 ≠ 0
x3^2 - 6x3 + 5 = 0
По Виета
x3 = 1 x3 = 5
Подставим x3 = 1 в выражение
1 - 12 + a - 60 = 0
a = 71
Подставим x3 = 5 в выражение
125 - 300 + 5a - 60 = 0
a = 47
Продолжаем искать корни
x1 + x2 = 11 (1) x1 + x2 = 7 (2)
x1 * x2 = 60, x1 * x2 = 12
отсюда x1 = 60/x2 отсюда x1 = 12/x2
Решаем 1-ую систему уравнений м-том подстановки
60/x2 + x2 = 11 | * x2
x2^2 - 11x2 + 60 = 0
D<0 - нет решения (Слава Богу)
Решаем 2-ую систему уравнений м-том подстановки
12/x2 + x2 = 7 |*x2
x2^2 - 7x2 + 12 = 0
x2 = 3 x2 = 4
x1 = 4 x1 = 3
Подставим x = 3 в выражение
27 - 108 + 3а - 60 = 0
а = 47
Подставим x = 4 в выражение
64 - 192 + 4а - 60 = 0
а = 47
корни данного уравнения x1 = 3 x2 = 4 x3 = 5
а = 47, a = 71
х∈[-3,5, 0,5].
Объяснение:
Решить неравенство:
(4х-6)²>=(6х+1)²
Раскрыть скобки:
16х²-48х+36>=36х²+12х+1
Привести подобные члены:
-36х²+16х²-48х-12х+36-1>=0
-20х²-60х+35>=0
Разделить неравенство на 20 для упрощения:
-х²-3х+1,75>=0
Приравнять к нулю и решить как квадратное уравнение:
-х²-3х+1,75=0/-1
х²+3х-1,75=0
D=b²-4ac =9+7=16 √D= 4
х₁=(-b-√D)/2a
х₁=(-3-4)/2
х₁= -7/2
х₁= -3,5;
х₂=(-b+√D)/2a
х₂=(-3+4)/2
х₂=1/2
х₂=0,5
Теперь начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное неравенство (-х²-3х+1,75>=0), ветви направлены вниз, парабола пересекает ось Ох при х= -3,5 и х=0,5, отмечаем эти точки схематично, смотрим на график.
По графику ясно видно, что у>=0 (как в неравенстве), в интервале при х от -3,5 до х=0,5.
Интервал решений неравенства х∈[-3,5, 0,5].
Неравенство нестрогое, значения х= -3,5 и х=0,5 входят в интервал решений неравенства, поэтому скобки квадратные.