Заме 728. На внутришкольной олимпиаде 14 учащихся решили дач. Некоторые из них решили 2 задачи, некоторые некоторые 4 задачи. Докажите, что некоторые из уч: ков олимпиады решили не менее 5 задач.
Произведение двух наибольших = 225 Чтобы получить 225, можно перемножить такие разные натуральные числа: 225*1, 75*3, 45*5, 25*9.
Произведение двух наименьших = 16 Чтобы получить 16, можно перемножить такие разные натуральные числа: 16*1, 8*2.
Т.к. есть 2 самых меньших и 2 самых больших, то меньшие не могут быть больше больших (очевидно же). Поэтому есть лишь вариант 25,9 и 8,2. В любых других случаях одно из больших чисел меньше одного из меньших чисел, чего не может быть. Сумма всех чисел = 25+9+8+2 = 44
1)Чтобы найти возрастание и убывание функции нужно найти экстремумы и посмотреть как будет вести себя функция при малейшем отклонении.
значит экстремумы в точках -(1;-1) а это значит что минимумов у функции нет ,так же как и максимумов,но убывает на всей числовой прямой . 2) значит экстремумы в точках (-2;16),(2;16) А тут видно что максимумы функции в точках x=2,а минимумы в точках x=-2 убывает на промежутках [-2;2] возрастает (-∞;2]∪[2;+∞) 3)сначала найдём производные 1 производная :
x∉R видим что первой производной нет ,ищем вторую
функция выпукла: (-∞;0) f"(x)<0 функция вогнута (0;+∞) f"(x)>0
Чтобы получить 225, можно перемножить такие разные натуральные числа:
225*1, 75*3, 45*5, 25*9.
Произведение двух наименьших = 16
Чтобы получить 16, можно перемножить такие разные натуральные числа:
16*1, 8*2.
Т.к. есть 2 самых меньших и 2 самых больших, то меньшие не могут быть больше больших (очевидно же). Поэтому есть лишь вариант 25,9 и 8,2. В любых других случаях одно из больших чисел меньше одного из меньших чисел, чего не может быть.
Сумма всех чисел = 25+9+8+2 = 44
значит экстремумы в точках -(1;-1)
а это значит что минимумов у функции нет ,так же как и максимумов,но убывает на всей числовой прямой .
2)
значит экстремумы в точках (-2;16),(2;16)
А тут видно что максимумы функции в точках x=2,а минимумы в точках x=-2
убывает на промежутках [-2;2]
возрастает (-∞;2]∪[2;+∞)
3)сначала найдём производные
1 производная :
x∉R
видим что первой производной нет ,ищем вторую
функция выпукла:
(-∞;0)
f"(x)<0
функция вогнута
(0;+∞)
f"(x)>0