В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
balabonkin68p06p8r
balabonkin68p06p8r
22.03.2023 05:45 •  Алгебра

Замени k одночленом так, чтобы получился квадрат бинома:
k^2+7x+64x^2.

Показать ответ
Ответ:
Shaxnoza2509
Shaxnoza2509
16.01.2024 19:46
Для решения данной задачи, нам нужно найти такое значение для k, чтобы получился квадрат бинома. Для этого мы должны привести выражение вида k^2 + 7x + 64x^2 к форме (a + b)^2.

Для начала, давайте посмотрим на выражение k^2 + 7x + 64x^2. Заметим, что первое и последнее слагаемые являются квадратами, а среднее слагаемое связано с произведением двух одночленов.

В квадрате бинома (a + b)^2, среднее слагаемое равно 2ab, где a и b являются "корнями" этого квадрата бинома.

Сравнивая выражение k^2 + 7x + 64x^2 с (a + b)^2, мы можем заметить, что 2ab = 7x.

Коэффициент перед x в нашем уравнении равен 7, поэтому мы должны найти два числа, которые умножены на 2, дают 7, и сложенные дают 0 (так как в исходном выражении нет никаких свободных членов).

Поскольку в нашем случае есть только одна переменная x, мы можем представить 7x как 2 * 3x + 2 * 4x.

Теперь, раскрывая скобки в (a + b)^2, мы получаем a^2 + 2ab + b^2. В нашем случае, a будет k, а b будут 3x и 4x.

Итак, можем записать наше исходное выражение в виде (k + 3x)^2 + (4x)^2.

Используя формулу разности квадратов (a^2 - b^2 = (a + b)(a - b)), мы можем записать (4x)^2 как (2x)^2 * 2^2.

Таким образом, исходное выражение k^2 + 7x + 64x^2 может быть записано в виде (k + 3x + 2x)(k + 3x - 2x).

Финальный ответ: чтобы получить квадрат бинома из исходного выражения k^2 + 7x + 64x^2, заменим k на k + 3x + 2x и k + 3x - 2x.

Мы использовали свойства квадрата бинома и формулу разности квадратов для нахождения ответа. Подробное объяснение каждого шага помогает понять школьнику, как мы пришли к этому решению.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота