Пусть концентрация первого раствора кислоты составит х, а второго – у. Если смешать два этих раствора, получим раствор, который содержит 72 % кислоты (72:100=0,72). Значит, 100х+20у=0,72*(100+20) 100х+20у=0,72*120 100х+20у=86,4 (1 уравнение).
Если же смешать равные массы растворов, то получим раствор, который содержит 78 % кислоты (78%:100%=0,78). Масса второго равна 20 кг, значит и массу первого необходимо взять 20 кг. 20х+20у=0,78*(20+20) 20х+20у=0,78*40 20х+20у=31,2 (2 уравнение)
Решим систему неравенств (методом сложения): {100х+20у=86,4 {20х+20у=31,2 (*-1)
{100х+20у=86,4 +{-20x-20y=-31,2 =(100х+(-20х))+(20у+(-20у))=86,4+(-31,2) 80х=55,2 х=55,2:80 х=0,69=69% (масса кислоты, содержащаяся в первом сосуде – 100 кг) 0,69*100 кг=69 кг кислоты содержится в первом сосуде ответ: масса кислоты, содержащаяся в первом сосуде равна 69 кг.
Система линейных уравнений с двумя неизвестными
x + y = 5
2x - 3y = 1
Система линейных ур-ний с тремя неизвестными
2*x = 2
5*y = 10
x + y + z = 3
Система дробно-рациональных уравнений
x + y = 3
1/x + 1/y = 2/5
Система четырёх уравнений
x1 + 2x2 + 3x3 - 2x4 = 1
2x1 - x2 - 2x3 - 3x4 = 2
3x1 + 2x2 - x3 + 2x4 = -5
2x1 - 3x2 + 2x3 + x4 = 11
Система линейных уравнений с четырьмя неизвестными
2x + 4y + 6z + 8v = 100
3x + 5y + 7z + 9v = 116
3x - 5y + 7z - 9v = -40
-2x + 4y - 6z + 8v = 36
Система трёх нелинейных ур-ний, содержащая квадрат и дробь
2/x = 11
x - 3*z^2 = 0
2/7*x + y - z = -3
Система двух ур-ний, содержащая куб (3-ю степень)
x = y^3
x*y = -5
Система ур-ний c квадратным корнем
x + y - sqrt(x*y) = 5
2*x*y = 3
Система тригонометрических ур-ний
x + y = 5*pi/2
sin(x) + cos(2y) = -1
Система показательных и логарифмических уравнений
y - log(x)/log(3) = 1
x^y = 3^12
Объяснение:
Если смешать два этих раствора, получим раствор, который содержит 72 % кислоты (72:100=0,72).
Значит, 100х+20у=0,72*(100+20)
100х+20у=0,72*120
100х+20у=86,4 (1 уравнение).
Если же смешать равные массы растворов, то получим раствор, который содержит 78 % кислоты (78%:100%=0,78). Масса второго равна 20 кг, значит и массу первого необходимо взять 20 кг. 20х+20у=0,78*(20+20)
20х+20у=0,78*40
20х+20у=31,2 (2 уравнение)
Решим систему неравенств (методом сложения):
{100х+20у=86,4
{20х+20у=31,2 (*-1)
{100х+20у=86,4
+{-20x-20y=-31,2
=(100х+(-20х))+(20у+(-20у))=86,4+(-31,2)
80х=55,2
х=55,2:80
х=0,69=69% (масса кислоты, содержащаяся в первом сосуде – 100 кг)
0,69*100 кг=69 кг кислоты содержится в первом сосуде
ответ: масса кислоты, содержащаяся в первом сосуде равна 69 кг.