Если пристань В выше по течению, то от А до В катер шел против течения. Скорость катера обозначим v, скорость по течению v+3, против v-3. AB/(v-3) = 11,5 Если катер не дойдет 100 км до В и повернет обратно в А, то он придет в А за тоже время, то есть 11,5 часов. (AB-100)/(v-3) + (AB-100)/(v+3) = 11,5 Получили систему { AB = 11,5*(v-3) { (11,5*(v-3) - 100)/(v-3) + (11,5*(v-3) - 100)/(v+3) = 11,5 Умножаем всё на (v-3)(v+3) 11,5*(v-3)(v+3) - 100(v+3) + 11,5*(v-3)^2 - 100(v-3) = 11,5*(v-3)(v+3) 11,5*(v^2-6v+9) - 100v - 300 - 100v + 300 = 0 Приводим подобные и умножаем всё на 2 23v^2 - 138v + 207 - 400v = 0 23v^2 - 538v + 207 = 0 D/4 = (b/2)^2 - ac = 269^2 - 23*207 = 67600 = 260^2 v1 = (-b/2 - √(D/4)) / a = (269 - 260)/23 = 9/23 - слишком мало, не подходит. v2 = (269 + 260)/23 = 529/23 = 23 - подходит. ответ: v = 23 км/ч
Скорость катера обозначим v, скорость по течению v+3, против v-3.
AB/(v-3) = 11,5
Если катер не дойдет 100 км до В и повернет обратно в А,
то он придет в А за тоже время, то есть 11,5 часов.
(AB-100)/(v-3) + (AB-100)/(v+3) = 11,5
Получили систему
{ AB = 11,5*(v-3)
{ (11,5*(v-3) - 100)/(v-3) + (11,5*(v-3) - 100)/(v+3) = 11,5
Умножаем всё на (v-3)(v+3)
11,5*(v-3)(v+3) - 100(v+3) + 11,5*(v-3)^2 - 100(v-3) = 11,5*(v-3)(v+3)
11,5*(v^2-6v+9) - 100v - 300 - 100v + 300 = 0
Приводим подобные и умножаем всё на 2
23v^2 - 138v + 207 - 400v = 0
23v^2 - 538v + 207 = 0
D/4 = (b/2)^2 - ac = 269^2 - 23*207 = 67600 = 260^2
v1 = (-b/2 - √(D/4)) / a = (269 - 260)/23 = 9/23 - слишком мало, не подходит.
v2 = (269 + 260)/23 = 529/23 = 23 - подходит.
ответ: v = 23 км/ч
Объяснение:
1.Найдите координаты вектора f, равного разности векторов d(-8;5) и e(5;-2).
d -e={-8-5;5-(-2)}={-13;7}
2.Найдите координаты вектора t, равного сумме векторов s(-8;5) и c(5;-2).
s(-8;5) и c(5;-2) t= {-8+5;5+(-2)}={-3;3}
3. Найдите координаты середины отрезка BD,
если B(-8;5), D(4;1). М( (-8+4)/2 ; (5+1)/2) М( (-2 ; 3)
4. Найдите длину отрезка AB, если A(-2;7), B(-1;-3)
!АВ!= √(-1+2)²+(3-7)²=√17
5. Найдите длину вектора m, равного n+p , если n (6;-2), p (-7;-2).
n→ {6;-2}+p→{-7;-2} = {6+(-7);-2+(-2}= {-1;-4}
6. Найдите координаты вектора -5a , если a(-0,2;4) = {-1;-4}.
-5a ={-0,2*5;4*5} = {-1;20}