Чтобы определить количество корней в квадратном уравнении, достаточно вычислить его дискриминант по формуле: (если дискриминант больше нуля уравнение имеет 2 корня, если равен нулю, уравнение имеет 1 корень, если меньше нуля, то нет корней), либо применяя разложение многочлена
Дискриминант больше нуля - два корня
Дискриминант равен нулю. В уравнении 1 корень
Дискриминант меньше нуля, значит нет действительных корней
2)
Найти область определения функции - это найти "проблемные точки" в функции, при которых функция перестанет существовать. В нашем случае, это нельзя допускать, когда знаменатель обратится в ноль. Для этого мы должны его приравнять к нулю и выяснить, при каких значениях функция перестанет существовать.
В нашем случае функция не имеет смысла, при х=-1 и х=0
Если каждое слагаемое делится на некоторое число, то и вся сумма делится на это число.
Если одно слагаемое делится на некоторое число, а другое слагаемое не делится на это число, то и вся сумма не делится на это число.
1.
Пусть - пять последовательных натуральных чисел, тогда их сумма равна:
Очевидно, что каждое слагаемое и делится на 5, а это означает, что вся сумма делится на 5.
Доказано.
2.
Пусть - четыре последовательных натуральных числа, тогда их сумма равна:
Очевидно, что первое слагаемое делится на 4, а второе слагаемое не делится на 4, это означает, что вся сумма не делится на 4.
Доказано.
3.
Пусть - четыре последовательных нечётных натуральных числа, тогда их сумма равна:
Очевидно, что каждое слагаемое и делится на 8, а это означает, что вся сумма делится на 8.
Доказано.
4.
Пусть ; - четыре последовательных чётных натуральных числа, тогда их сумма равна:
Очевидно, что каждое слагаемое и делится на 4, а это означает, что вся сумма делится на 4.
Доказано.
Дискриминант больше нуля - два корня
Дискриминант равен нулю. В уравнении 1 корень
Дискриминант меньше нуля, значит нет действительных корней
2)
Найти область определения функции - это найти "проблемные точки" в функции, при которых функция перестанет существовать.
В нашем случае, это нельзя допускать, когда знаменатель обратится в ноль. Для этого мы должны его приравнять к нулю и выяснить, при каких значениях функция перестанет существовать.
В нашем случае функция не имеет смысла, при х=-1 и х=0