Примем массу серебра в начальном сплаве за х, меди - за у.
На основе задания составим 2 уравнения:
(х + 3)/(х + 3 + у) = 0,9, х + 3 = 0,9х + 2,7 + 0,9у.
(х + 2*0,9)/(х + 2 + у) = 0,84, х + 1,8 = 0,84х + 1,68 + 0,84у.
Упрощая, получаем:
0,1х = 0,9у - 0,3 х = 9у - 3 -4х = -36у + 12
0,16х = 0,84у - 0,12 4х = 21у - 3. 4х = 21у - 3.
15у = 9
Получаем ответ:
х = 2,4 кг, у = 0,6 кг.
Процент равен 2,4/(2,4 + 0,6)*100 = 80 %.
cos²α = 1 - sin²α
cos²α = 1 - 576/625
cos²α = 49/625, cosα= -7/25 (перед дробью знак минус, т.к. α∈(π;3π/2) , а косинус в этом промежутке отрицательный)
2. sin (3π/2 - 2x) = sinx, (3π/2 ; 5π/2)
Применяем формулы приведения, и получаем:
-cos2x = sinx |:(-1)
cos2x = -sinx
cos²x-sin²x = -sinx
cos²x-sin²x+sinx = 0
1 - sin²x - sin²x + sinx = 0
-2sin²x + sinx + 1 =0
Делаем замену: sinx=a
-2a² + a + 1 = 0
D = 9, √D = 3
a1 = 1, a2 = - 1/2
sinx = 1 sinx = -1/2
x = π/2 + 2πn x = (-1)^n arcsin(-1/2) + πn
x=(-1)^n+1 π/6 + πn
Перебираем корни:
n=0 n=1 n=2
x=π/2 - не подходит x=5π/2 - подходит x=9π/2 - не подходит
x=-π/6 - не подходит x=7π/6 - не подходит x=11π/6 - подходит
n=3
x=13π/2 - не подходит
x=19π/6 - не подходит.
Дальше корни будут больше, и не войдут в промежуток. Значит, только 2 корня
Примем массу серебра в начальном сплаве за х, меди - за у.
На основе задания составим 2 уравнения:
(х + 3)/(х + 3 + у) = 0,9, х + 3 = 0,9х + 2,7 + 0,9у.
(х + 2*0,9)/(х + 2 + у) = 0,84, х + 1,8 = 0,84х + 1,68 + 0,84у.
Упрощая, получаем:
0,1х = 0,9у - 0,3 х = 9у - 3 -4х = -36у + 12
0,16х = 0,84у - 0,12 4х = 21у - 3. 4х = 21у - 3.
15у = 9
Получаем ответ:
х = 2,4 кг, у = 0,6 кг.
Процент равен 2,4/(2,4 + 0,6)*100 = 80 %.