Пусть хкм/ч-скорость второго, тогда скорость первого равна х+10км/ч. Когда указывается, что тот или иной объект добрался до пункта назначения за какое-то время раньше или позже, необходимо от меньшей скорости, то есть хкм/ч, отнять большую. Расстояние S=560 км, скорость первого u=х+10км/ч, а скорость второго u=xкм/ч. Таким образом, составляем уравнение: 560/х -560/х+10=1. Решая это дробно-рациональное уравнение, получим квадратное уравнение х2+10х-5600=0, положительным корнем которого является число 2.5.ответ:2.5км/ч-скорость второго автомобиля, а скорость первого 12.5 км/ч.
x и x+3 - корни уравнения
4x²+8x+q=0 |:4
x²+2x+ q/4=0
Применим теорему Виета: x+x+3=-2
2x=-5
x=-2,5
x+3=-2,5+3=0,5
Итак, -2,5 и 0,5 - корни уравнения, значит, q/4=-2,5*0,5
q=(-2,5*4)*0,5
q=-5
ответ: q=-5