производная равна 7, 7≠0, , поэтому нет критических точек, и наибольшее и наименьшее свое значение функция принимает на концах отрезка.
f(0) = -14-наименьшее значение.
f(4) =14 наибольшее значение функции
2) f(x)= -0,2x + 0,4, [1;3]
аналогично 1) производная -0.2≠0, ищем значения функции на концах отрезка, т.е. f(1) =-0.2+0.4=0.2- наибольшее значение.
f(3) =-0.6+0.4=-0.2-наименьшее значение.
3) f(x)= 6/x, [1;6]
производная равна -6/х²≠0, не существует в точке 0, но эта точка не входит и в область определения. ищем значения функции на концах отрезка, т.е. f(1) =6/1=6- наибольшее значение.
f(6) =6/6=1- наименьшее значение.
4) f(x)= -5/x, [-5;-1]
Производная равна 5/х²≠0 не существует в точке 0, но эта точка не входит и в область определения. ищем значения функции на концах отрезка, т.е. f(-1) =-5/(-1)=5- наибольшее значение.
9x² + 12x + 4 = 10 + 3(x² - 4)
9x² + 12x + 4 = 10 + 3x² - 12
9x² - 3x² + 12x + 4 + 2 = 0
6x² + 12x + 6 = 0
x² + 2x + 1 = 0
D = b² - 4ac = 4 - 4 × 1 = 0 - имеет один корень.
x = - b/2a
x = - 2 / 2 = - 1
ответ: x = - 1.
2) (2x - 3)(2x - 3) =9 - 2(x - 3)(x + 3)
4x² - 12x + 9 = 9 - 2( x² - 9)
4x² - 12x + 9 = 9 - 2x² + 18
4x² + 2x² - 12x + 9 - 9 - 18 = 0
6x² - 12x - 18 = 0
x² - 2x - 3 = 0
D = b² - 4ac = 4 - 4 ×(- 3 )= 4 + 12 = 16 = 4²
x1 = (2 + 4)/2 = 3
x2 = ( 2 - 4) /2 = - 1.
3) (x + 2)(x² - 2x + 4) - x²(x + 2) = 0
x³ - 2x² + 4x + 2x² - 4x + 8 - x³ - 2x² = 0
- 2x² + 8 = 0
- 2x² = - 8
2x² = 8
x² = 4
x = 2
x = - 2
4) (x - 1)(x² + x + 1) - x²(x - 1) = 0
x³ + x² + x - x² - x - 1 - x³ + x² = 0
x² - 1 = 0
x² = 1
x = 1
x = - 1
ответ: x = 1, x = - 1.
1) f(x)=7x-14, [0;4]
производная равна 7, 7≠0, , поэтому нет критических точек, и наибольшее и наименьшее свое значение функция принимает на концах отрезка.
f(0) = -14-наименьшее значение.
f(4) =14 наибольшее значение функции
2) f(x)= -0,2x + 0,4, [1;3]
аналогично 1) производная -0.2≠0, ищем значения функции на концах отрезка, т.е. f(1) =-0.2+0.4=0.2- наибольшее значение.
f(3) =-0.6+0.4=-0.2-наименьшее значение.
3) f(x)= 6/x, [1;6]
производная равна -6/х²≠0, не существует в точке 0, но эта точка не входит и в область определения. ищем значения функции на концах отрезка, т.е. f(1) =6/1=6- наибольшее значение.
f(6) =6/6=1- наименьшее значение.
4) f(x)= -5/x, [-5;-1]
Производная равна 5/х²≠0 не существует в точке 0, но эта точка не входит и в область определения. ищем значения функции на концах отрезка, т.е. f(-1) =-5/(-1)=5- наибольшее значение.
f(-5) =-5/(-5)=1- наименьшее значение.