В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
pspoff
pspoff
03.12.2022 19:04 •  Алгебра

Записать в виде суммы разрядных слагемых число 813;2753

Показать ответ
Ответ:
Zavaw
Zavaw
19.12.2021 23:31

1) Пусть оба числа непарные. Тогда p^2, p^3, q^2, q^3 тоже непарные. Так как сумма непарных равна парному числу, то p^2+q^3 и p^3+q^2 парные. Но p,q непарные (значит p>2, q>2) и тогда p^2+q^3>4+8=12>2 и оно не может быть простым. Второе число аналогично.

2) Тогда без потери общности, пусть p парное. Так как оно простое, то p=2.

2.1) Пусть q не делится на 3. Тогда q^2 дает остаток 1 при делении на 3. (Действительно, пусть q=3a+b, где b - остаток при делении q на 3. b может равняться 1 или 2 (из предположения), и поэтому q^2=(3a+b)^2=9a^2+6ab+b^2 дает такой же остаток, как и b^2 при делении на 3. Но b^2=1 или b^2=4, в обоих случаях дает остаток 1).

Рассмотрим число p^3+q^2=8+q^2, оно дает такой же остаток как и 8+1=9 при делении на 3. То есть делится на 3. Также 8+q^2>8>3. А значит не является простым.

2.2) Значит q делится на 3. Так как оно простое, то q=3. Проверяем: p^2+q^3=4+27=31 простое и p^3+q^2=8+9=17 простое.

Аналогично рассматривается случай, когда q=2. (Так как числа p^2+q^3 и q^2+p^3 симметричны относительно p и q, то ответ тоже будет симметричен, а значит q=2 и p=3).

ответ: p=2, q=3 или же p=3, q=2.

0,0(0 оценок)
Ответ:
YAMAHAv
YAMAHAv
24.05.2021 21:28
Область допустимых значений (ОДЗ): x >= -4.
x - 4*V(x + 4) - 1 < 0 ( V - корень квадратный).
x - 1 < 4*V(x + 4)
Правая часть неравенства <= 0 для всех х из ОДЗ, левая часть < 0 при x < 1, то есть неравенство выполняется при x < 1,
с учетом ОДЗ получаем -4 <= х < 1.
Пусть x >= 1.
Возведем обе части неравенства в квадрат
(x - 1)^2 < 16*(x + 4)
x^2 - 2*x + 1 < 16*x + 64
x^2 - 18*x - 63 < 0
Равенство верно на интервале между корнями уравнения.
Корни х1 = -3, х2 = 21, неравенство выполняется для -3 < х < 21, с учетом x >= 1 получаем 1 <= х < 21.
Объединяем условия -4 <= х < 1 и 1 <= х < 21, получаем
ответ: -4 <= х < 21.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота