1) Пусть оба числа непарные. Тогда p^2, p^3, q^2, q^3 тоже непарные. Так как сумма непарных равна парному числу, то p^2+q^3 и p^3+q^2 парные. Но p,q непарные (значит p>2, q>2) и тогда p^2+q^3>4+8=12>2 и оно не может быть простым. Второе число аналогично.
2) Тогда без потери общности, пусть p парное. Так как оно простое, то p=2.
2.1) Пусть q не делится на 3. Тогда q^2 дает остаток 1 при делении на 3. (Действительно, пусть q=3a+b, где b - остаток при делении q на 3. b может равняться 1 или 2 (из предположения), и поэтому q^2=(3a+b)^2=9a^2+6ab+b^2 дает такой же остаток, как и b^2 при делении на 3. Но b^2=1 или b^2=4, в обоих случаях дает остаток 1).
Рассмотрим число p^3+q^2=8+q^2, оно дает такой же остаток как и 8+1=9 при делении на 3. То есть делится на 3. Также 8+q^2>8>3. А значит не является простым.
2.2) Значит q делится на 3. Так как оно простое, то q=3. Проверяем: p^2+q^3=4+27=31 простое и p^3+q^2=8+9=17 простое.
Аналогично рассматривается случай, когда q=2. (Так как числа p^2+q^3 и q^2+p^3 симметричны относительно p и q, то ответ тоже будет симметричен, а значит q=2 и p=3).
Область допустимых значений (ОДЗ): x >= -4. x - 4*V(x + 4) - 1 < 0 ( V - корень квадратный). x - 1 < 4*V(x + 4) Правая часть неравенства <= 0 для всех х из ОДЗ, левая часть < 0 при x < 1, то есть неравенство выполняется при x < 1, с учетом ОДЗ получаем -4 <= х < 1. Пусть x >= 1. Возведем обе части неравенства в квадрат (x - 1)^2 < 16*(x + 4) x^2 - 2*x + 1 < 16*x + 64 x^2 - 18*x - 63 < 0 Равенство верно на интервале между корнями уравнения. Корни х1 = -3, х2 = 21, неравенство выполняется для -3 < х < 21, с учетом x >= 1 получаем 1 <= х < 21. Объединяем условия -4 <= х < 1 и 1 <= х < 21, получаем ответ: -4 <= х < 21.
1) Пусть оба числа непарные. Тогда p^2, p^3, q^2, q^3 тоже непарные. Так как сумма непарных равна парному числу, то p^2+q^3 и p^3+q^2 парные. Но p,q непарные (значит p>2, q>2) и тогда p^2+q^3>4+8=12>2 и оно не может быть простым. Второе число аналогично.
2) Тогда без потери общности, пусть p парное. Так как оно простое, то p=2.
2.1) Пусть q не делится на 3. Тогда q^2 дает остаток 1 при делении на 3. (Действительно, пусть q=3a+b, где b - остаток при делении q на 3. b может равняться 1 или 2 (из предположения), и поэтому q^2=(3a+b)^2=9a^2+6ab+b^2 дает такой же остаток, как и b^2 при делении на 3. Но b^2=1 или b^2=4, в обоих случаях дает остаток 1).
Рассмотрим число p^3+q^2=8+q^2, оно дает такой же остаток как и 8+1=9 при делении на 3. То есть делится на 3. Также 8+q^2>8>3. А значит не является простым.
2.2) Значит q делится на 3. Так как оно простое, то q=3. Проверяем: p^2+q^3=4+27=31 простое и p^3+q^2=8+9=17 простое.
Аналогично рассматривается случай, когда q=2. (Так как числа p^2+q^3 и q^2+p^3 симметричны относительно p и q, то ответ тоже будет симметричен, а значит q=2 и p=3).
ответ: p=2, q=3 или же p=3, q=2.
x - 4*V(x + 4) - 1 < 0 ( V - корень квадратный).
x - 1 < 4*V(x + 4)
Правая часть неравенства <= 0 для всех х из ОДЗ, левая часть < 0 при x < 1, то есть неравенство выполняется при x < 1,
с учетом ОДЗ получаем -4 <= х < 1.
Пусть x >= 1.
Возведем обе части неравенства в квадрат
(x - 1)^2 < 16*(x + 4)
x^2 - 2*x + 1 < 16*x + 64
x^2 - 18*x - 63 < 0
Равенство верно на интервале между корнями уравнения.
Корни х1 = -3, х2 = 21, неравенство выполняется для -3 < х < 21, с учетом x >= 1 получаем 1 <= х < 21.
Объединяем условия -4 <= х < 1 и 1 <= х < 21, получаем
ответ: -4 <= х < 21.