Графически это выглядит следующим образом (см. вложение). Нам нужна площадь области, выделенной красным цветом (честно говоря, полчаса соображал, как это сделать в программе, чтобы она меня поняла)).
Алгоритм такой: 0. Обе параболы поднимаются на 1 единицу вверх, чтобы мы могли вычислить определённый интеграл (он ограничен осью x). Площадь фигуры при этом не изменится, так что всё нормально. 1. Вычисляется площадь фигуры под ; 2. Теперь — под ; 3. Разность площадей и будет искомой фигурой.
По дороге ещё придётся найти нули функции, т. к. для определённого интеграла нужна область вычисления.
Поехали.
1)
2)
3) (кв. ед.)
Вроде бы так... :) Попробую сейчас проверить решение.
Графически это выглядит следующим образом (см. вложение). Нам нужна площадь области, выделенной красным цветом (честно говоря, полчаса соображал, как это сделать в программе, чтобы она меня поняла)).
Алгоритм такой:
0. Обе параболы поднимаются на 1 единицу вверх, чтобы мы могли вычислить определённый интеграл (он ограничен осью x). Площадь фигуры при этом не изменится, так что всё нормально.
1. Вычисляется площадь фигуры под ;
2. Теперь — под ;
3. Разность площадей и будет искомой фигурой.
По дороге ещё придётся найти нули функции, т. к. для определённого интеграла нужна область вычисления.
Поехали.
1)
2)
3) (кв. ед.)
Вроде бы так... :)
Попробую сейчас проверить решение.
upd: да, всё сошлось.
Объяснение:
График такой функции всегда прямая линия.
Его строят по двум точкам.
Подставляют в уравнение х=0
Тогда у=0-2=-2
Получаем первую точку графика с координатами (х=0, у=-2) или (0, -2).
Ставим эту точку. Она на оси ОУ.
Теперь берем у=0 и подставляем в наше уравнение
0=х-2 Тогда х=2. Получаем точку (х=2, у=0) или (2,0) Она на оси ОХ.
Строим эти точки на графике и проводим через них прямую.
Это и есть график нашей линейной функции.
И так поступаем всегда. Приравниваем х=0 и находим у, а потом у=0 и находим х. И строим 2 точки для графика прямой.
Это понятно?