а) 4x² - 4x - 15 < 0
D = b² - 4ac = 16 + 4*4*15 = 16 + 240 = 256
x₁ = (-b + √D) / 2a = (4 + 16) / 8 = 20 / 8 = 2,5
x₂ = (-b - √D) / 2a = (4 - 16) / 8 = -12 / 8 = -1,5
(x - 2,5)(х + 1,5) < 0
{ x < 2,5
{ x < -1,5
ответ: (-1,5; 2,5)
б) x² - 81 > 0
(x - 9)(x + 9) > 0
{ x > -9
{ x > 9
ответ: (-9; 9)
в) x² < 1,7х
x² - 1,7х < 0
х(x - 1,7) < 0
{ x < 0
{ x < 1,7
ответ: (0; 1,7)
г) x( x + 3) - 6 < 3 (x + 1)
x² + 3x - 6 - 3x - 3 < 0
x² - 9 < 0
(x - 3)(x + 3) < 0
{ x < -3
{ x < 3
ответ: (-3; 3)
а) 4x² - 4x - 15 < 0
D = b² - 4ac = 16 + 4*4*15 = 16 + 240 = 256
x₁ = (-b + √D) / 2a = (4 + 16) / 8 = 20 / 8 = 2,5
x₂ = (-b - √D) / 2a = (4 - 16) / 8 = -12 / 8 = -1,5
(x - 2,5)(х + 1,5) < 0
{ x < 2,5
{ x < -1,5
ответ: (-1,5; 2,5)
б) x² - 81 > 0
(x - 9)(x + 9) > 0
{ x > -9
{ x > 9
ответ: (-9; 9)
в) x² < 1,7х
x² - 1,7х < 0
х(x - 1,7) < 0
{ x < 0
{ x < 1,7
ответ: (0; 1,7)
г) x( x + 3) - 6 < 3 (x + 1)
x² + 3x - 6 - 3x - 3 < 0
x² - 9 < 0
(x - 3)(x + 3) < 0
{ x < -3
{ x < 3
ответ: (-3; 3)
(y-2)^2; (y+2)^2
(7x-3)^2; (7x+3)^2
(8m^3-7)^2; (8m^3+7)^2
(-6-10p)^2; (-6+10p)^2
(2x-3y)^2; (2x+3y)^2
(5e-4q)^2; (5e+4q)^2
(9t+3z)^2 (это квадрат разности!); (9t-3z)^2 (это квадрат суммы!)
(2d+5d)^2 = (7d)^2 (разности!); (2d-5d)^2 = (-3d)^2 = (3d)^2 (суммы!)
2)
72^2 = (70 + 2)^2 = 70^2 + 2*70*2 + 2^2 = 4900+280+4 = 5184
31^2 = (30+1)^2 = 30^2 + 2*30*1 + 1^2 = 900 + 60 + 1 = 961
3,2^2 = (3 + 0,2)^2 = 3^2 + 2*3*0,2 + 0,2^2 = 9 + 1,2 + 0,04 = 10,24
6,3^2 = (6 + 0,3)^2 = 6^2 + 2*6*0,3 + 0,3^2 = 36+3,6+0,09 = 39,69
2,95^2 = (3-0,05)^2 = 3^2-2*3*0,05+0,05^2 = 9-0,3+0,0025 = 8,7025
9,99^2=(10-0,01)^2=10^2-2*10*0,01+0,0001=100-0,2+0,0001=99,8001