Частота появления события А является случайной величиной, обозначим её через X.
Так как грань с нечётным количеством очков может выпасть 0, 1, 2 или 3 раза, то частота появления принимает значения 0, 1/3, 2/3 и 1. При этом так как на игральной кости 3 грани с нечётным количеством очков и 3 - с чётным, то вероятность события А в одном опыте (то есть при одном бросании кости) равна 3/6=1/2. Найдём соответствующие вероятности:
Проверка: p0+p1+p2+p3=1, так что вероятности найдены верно. Составляем закон распределения частоты появления события А:
Xi 0 1/3 2/3 1
Pi 1/8 3/8 3/8 1/8
Математическое ожидание M[X]=∑Xi*Pi=1/2; дисперсия D[X]=∑(Xi-M[X])²*Pi=1/12. Пусть событие А1 заключается в том, что событие A появится хотя бы в одном испытании. Для нахождения вероятности P(A1) рассмотрим противоположное ему событие B1, которое заключается в том, что грань с нечётным количеством очков не появится ни при одном броске. Так как события A1 и B1 - независимые и притом образуют полную группу, то P(A1)+P(B1)=1, откуда P(A1)=1-P(B1). А так как P(B1)=1/2*1/2*1/2=1/8, то P(A1)=1-1/8=7/8=0,875.
1. снование равно 12,8, так треугольник равнобедренный, а боковая сторона равна 8
2. По признаку о равнобедренном треугольнике, что высота проведенная из вершины угла, является и биссектрисой и медианой, так как высота это медиана, то получается что высота делит треугольник пополам.
Xi 0 1/3 2/3 1
Pi 1/8 3/8 3/8 1/8
M[X]=1/2; D[X]=1/12; p=0,875.
Объяснение:
Частота появления события А является случайной величиной, обозначим её через X.
Так как грань с нечётным количеством очков может выпасть 0, 1, 2 или 3 раза, то частота появления принимает значения 0, 1/3, 2/3 и 1. При этом так как на игральной кости 3 грани с нечётным количеством очков и 3 - с чётным, то вероятность события А в одном опыте (то есть при одном бросании кости) равна 3/6=1/2. Найдём соответствующие вероятности:
P0=1/2*1/2*1/2=1/8; P1=3*1/2*1/2*1/2=3/8; P2=3*1/2*1/2*1/2=3/8; P3=1/2*1/2*1/2=1/8.
Проверка: p0+p1+p2+p3=1, так что вероятности найдены верно. Составляем закон распределения частоты появления события А:
Xi 0 1/3 2/3 1
Pi 1/8 3/8 3/8 1/8
Математическое ожидание M[X]=∑Xi*Pi=1/2; дисперсия D[X]=∑(Xi-M[X])²*Pi=1/12. Пусть событие А1 заключается в том, что событие A появится хотя бы в одном испытании. Для нахождения вероятности P(A1) рассмотрим противоположное ему событие B1, которое заключается в том, что грань с нечётным количеством очков не появится ни при одном броске. Так как события A1 и B1 - независимые и притом образуют полную группу, то P(A1)+P(B1)=1, откуда P(A1)=1-P(B1). А так как P(B1)=1/2*1/2*1/2=1/8, то P(A1)=1-1/8=7/8=0,875.
1. снование равно 12,8, так треугольник равнобедренный, а боковая сторона равна 8
2. По признаку о равнобедренном треугольнике, что высота проведенная из вершины угла, является и биссектрисой и медианой, так как высота это медиана, то получается что высота делит треугольник пополам.
3. Мы получили прямоугольный треугольник
По теореме Пифагора находим высоту, то есть:
а^2+в^2=с^2 (где а и в-катеты, а с-гипотенуза)
пусть в-Х,
а=1/2 основная, что равно 6,4
с-боковая сторона, что по условию равно 8
подставим числа
8^2=6,4^2+х^2
64=40,96+х^2
х^2=23,04
х=4,8