Запишіть у вигляді виразу: 1) число, протилежне числу a;
2) число, обернене до числа а;
3) суму чисел x і y;
4) число, обернене до суми чисел x і y;
5) суму чисел, обернених до чисел x і y;
6) суму числа a та його квадрата;
7) частку від ділення числа a на число, протилежне числу b;
8) добуток суми чисел a і b та числа, оберненого до числа c;
9) різницю добутку чисел m і n та частки чисел p і q;
C(0;4)
Объяснение:
чтобы узнать ,принадлежит ли точка графику функции,надо в данную функцию подставить значения х и у.если получим верное равенство-тогда точка принадлежит графику функции,а если равенство будет неверным,значит точка не принадлежит графику.
A(2;3)
Х=3
У=2
Подставим вместо у и х эти цифры
2=3²-5×3+4
Будет -2 т.к. -2 нету в точке А то она не подходит.❌
В(1;4)
4=1²-5×1+4
Пример равен 0, не принадлежит графику.❌
С(0;4)
4=0-5×0+4
Пример равен 4,т.к. пример совпадает с точками С то он относится к графику.✔
D(5;12)
12=4²-5×4+4
Поимер равен 0, не принадлежит графику.❌
Е(-2;16)
16=-2²-5×(-2)+4
Пример равен 10, не принадлежит графику.❌
F(1;-12)
-12=1²-5×1+4
Пример равен 0, не принадлежит графику.❌
Коммент от меня)
Откуда я это знаю? Я это сейчас делала,тоже искала ответ тут но не нашла,покапаясь в тетрадке,нашла как решать,учитель подтвердил эти ответы и поставил 5. Так что это правильно;)
sin(90-a)=cosa
sin(180+a)=-sina
cos(270+a)=sina
cos(360+a)=cosa
Именно этими углами(90(π/2) , 180(π), 270(3π/2), 360(2π)) мы пользуемся в формулах приведения. И ещё одно, угол a∈(0;90).
Но чтобы их все не запоминать, нужно запомнить закон с которого можно вывести любую из них. Итак нужно запомнить в каких четвертях cos, sin, tg, ctg положительны или отрицательны. Всё это есть во вложении. Легче запомнить если кое что уяснить sin положителен когда положительна ось ординат(её часто обозначают y), cos - когда положительная ось абсцисс(x), tg и ctg (это sin/cos(cos/sin)) поэтому они положительны когда одновременно положительны или отрицательны cos и sin. С этим вроде бы разобрались.
Теперь ещё один закон:
при углах 90 и 270 функция изменяется на кофункцию.
при углах 180 и 360 функция не изменяется.
Изменение на кофункцию - замена косинуса синусом(и наоборот) и замена тангенса котангенсом(и наоборот).
Теперь попробуем решить ваш пример:
cos(π/9) нам нужно заменить на sin. Вспомним что при углах π/2 и 3π/2 функция изменяется на кофункцию, поэтому представим π/9 в виде суммы(разности) с одним из этих углов:
π/2=9π/18
π/9=2π/18=9π/18 - 7π/18
cos(π/9)=cos(π/2 - 7π/18)=[π/2 - 7π/18 это 1 четверть, cos в ней положителен, знак при замене не меняется]=sin(7π/18).
Будут вопросы - спрашивайте.