Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
Милан228
22.04.2021 06:43 •
Алгебра
Запиши абсциссу и ординату точки (12;−7).
ответ:
абсцисса точки ;
ордината точки .
(2)
Даны координаты точки. Определи, на которой координатной оси находится данная точка.
Точка (35;0) находится на оси .
ответить!
Показать ответ
Ответ:
Dwtop1
06.01.2023 20:46
1) если х=0,то у= -5*0+2*0=0 (0;0)
если у=0, то -5x^2+2x=0
5x^2-2x=0
x(5x-2)=0
x1=0 x2=0,4 (0;0),(0,4;0)
2) если х=0,то у= -2 (0;-2)
если у=0,то 21x^2-x-2=0
D=1+168=169
x1= 1-13/42= -12/42=-2/7
x2=1+13/42=14/42=1/3 (-2/7;0), (1/3;0)
3)если х=0,то у=14 (0;14)
если у=0,то -6x^2+17x+14=0
6x^2-17x-14=0
D=289+336=625
x1=17-25/12= -8/12= -2/3
x2=17+25/12=42/12=3,5 (-2/3;0),(3,5;0)
0,0
(0 оценок)
Ответ:
133719
06.01.2023 20:46
2)y=sin²x+sinx
x=0⇒y=0
y=0⇒sin²x+sinx=0⇒sinx(sinx+1)=0⇒
sinx=0⇒x=πn U sinx=-1⇒x=-π/2+πn
(0;0),(πn;0),(-π/2+πn;0)
y=cosx-cos2x-sin3x
x=0⇒y=1-1-0=0
y=0⇒cosx-cos2x-sin3x=0⇒2sin3x/2sinx/2-2sin3x/2cos3x/2)=2sin3x/2(sinx/2-cos3x/2)=0
sin3x/2=0⇒3x/2=πn⇒x=2πn/3
sinx/2-cos3x/2=0⇒sinx/2-sin(π/2-3x/2)=0⇒-2sin(x/2-π/4)cos(x+π/4)=0
sin(x/2-π/4)=0⇒x/2-π/4=πn⇒x/2=π/4+πn⇒x=π/2+2πn
cos(x+π/4)=0⇒x+π/4=π/2+πn⇒x=π/4+πn
(0;0),(2πn/3 ;0),(π/2+2πn;0,(π/4+πn;0)
3.1)2-2sin²x-sinx-2>0
2sin²x+sinx<0
sinx=a
2a²+a<0⇒a(2a+1)<0 a=0 U a=-1/2
+ _ +
-1/2 0
-1/2<a<0⇒-1/2<sinx<0⇒x∈(-π/6+2πn;2πn) U (π+2πn;7π/6+2πn)
3.2)cos2x-5sinx-3≤0
1-2sin²x-5sinx-3≤0
2sin²x+5sinx+2≥0
sinx=a
2a²+5a+2≥0
D=25-16=9
a1=(-5-3)/4=-2U a2=(-5+3)/4=-1/2
+ _ +
-2 -1/2
a≤-2⇒sinx≤-2∈[-1;1]-нет решения
a≥-1/2⇒sinx≥-1/2⇒-π/6+2πn≤x≤7π/6+2πn⇒x∈[-π/6+2πn;7π/6+2πn]
0,0
(0 оценок)
Популярные вопросы: Алгебра
натярппо
09.06.2023 23:31
Расстояние между пристанями прогулочный катер проплывает по течению за 3 часа со скоростью 28 км /ч, а за 4 часа возвращается обратно. Какова скорость катера (в км/ч)...
прииииииип
17.10.2020 23:19
Знайти найбільше і найменше значення функції f(x)=x^3-3x, на відрізку ( 0;3)...
mlpfim2004
28.07.2022 13:17
Укажіть квадратне рівняння, що не має коренів. х2 =16 х2 = -4 х2 + 25 = 0 х2 - 9 = 0...
Semfore
09.05.2022 12:33
Решите систему уравнений3x+2y=7x²-6y=10...
Ilyaky
06.09.2020 20:49
По параллельным путям в одном направлении следуют два поезда: первый длиной 220 метров, второй — длиной 120 метров. В некоторый момент времени второй поезд отставал от...
дэньчик4
28.06.2021 06:35
Якi значення х не входять до областi визначення функц...
ХасекиКуро
10.02.2020 05:16
Данные об итоговых отметок по истории полученных выпускниками одной из школ таковы 5 4 3 4 4 4 5 3 4 5 5 3 3 3 4 5 4 5 5 4 4 5 5 составьте таблицу распределения итоговых...
lenakors1997
05.01.2022 02:31
Знайдіть значення k якщо відомо що графік функції y=kx+7 проходить через точку М (2;-1)...
ладнобудеттакойник
22.12.2020 22:46
Укажи коэффициенты квадратного уравнения. Запиши в каждое поле ответа верное число. 3x^2−5x+1=0 a= b= c= 5x^2+x-8=0 a= b= c= x^2-4x=0x a= b= c= x^2+6=0 a= b= c=...
lilipute2017
15.09.2020 08:03
Кутом якої чверті може бути кут β, якщо cosβctgβ 0...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
если у=0, то -5x^2+2x=0
5x^2-2x=0
x(5x-2)=0
x1=0 x2=0,4 (0;0),(0,4;0)
2) если х=0,то у= -2 (0;-2)
если у=0,то 21x^2-x-2=0
D=1+168=169
x1= 1-13/42= -12/42=-2/7
x2=1+13/42=14/42=1/3 (-2/7;0), (1/3;0)
3)если х=0,то у=14 (0;14)
если у=0,то -6x^2+17x+14=0
6x^2-17x-14=0
D=289+336=625
x1=17-25/12= -8/12= -2/3
x2=17+25/12=42/12=3,5 (-2/3;0),(3,5;0)
x=0⇒y=0
y=0⇒sin²x+sinx=0⇒sinx(sinx+1)=0⇒
sinx=0⇒x=πn U sinx=-1⇒x=-π/2+πn
(0;0),(πn;0),(-π/2+πn;0)
y=cosx-cos2x-sin3x
x=0⇒y=1-1-0=0
y=0⇒cosx-cos2x-sin3x=0⇒2sin3x/2sinx/2-2sin3x/2cos3x/2)=2sin3x/2(sinx/2-cos3x/2)=0
sin3x/2=0⇒3x/2=πn⇒x=2πn/3
sinx/2-cos3x/2=0⇒sinx/2-sin(π/2-3x/2)=0⇒-2sin(x/2-π/4)cos(x+π/4)=0
sin(x/2-π/4)=0⇒x/2-π/4=πn⇒x/2=π/4+πn⇒x=π/2+2πn
cos(x+π/4)=0⇒x+π/4=π/2+πn⇒x=π/4+πn
(0;0),(2πn/3 ;0),(π/2+2πn;0,(π/4+πn;0)
3.1)2-2sin²x-sinx-2>0
2sin²x+sinx<0
sinx=a
2a²+a<0⇒a(2a+1)<0 a=0 U a=-1/2
+ _ +
-1/2 0
-1/2<a<0⇒-1/2<sinx<0⇒x∈(-π/6+2πn;2πn) U (π+2πn;7π/6+2πn)
3.2)cos2x-5sinx-3≤0
1-2sin²x-5sinx-3≤0
2sin²x+5sinx+2≥0
sinx=a
2a²+5a+2≥0
D=25-16=9
a1=(-5-3)/4=-2U a2=(-5+3)/4=-1/2
+ _ +
-2 -1/2
a≤-2⇒sinx≤-2∈[-1;1]-нет решения
a≥-1/2⇒sinx≥-1/2⇒-π/6+2πn≤x≤7π/6+2πn⇒x∈[-π/6+2πn;7π/6+2πn]