Запиши координаты точки пересечения графика заданной функции с осью ординат. (/ - дробь, (2)(3) - степени.) 1) y= 2/5 x - 5 Игрек равно две пятых икс минус пять.
2) y = 2x(2) - 0.1 x + 17 Игрек равно два, икс во второй степени, минус 0.1 икс плюс 17
3) y = 1/27 x(3) - 1/16 x(2) + 1/3 x - 8 Игрек равно одна двадцатьседьмая, икс в 3 степени, минус одна шестнадцатая, икс во второй степени плюс одна третья икс минус 8.
3/(2^(2 - x²) -1)² - 4/(2^(2- x²) -1) + 1 ≥ 0 ;
замена : t = 2^(2-x²) -1
3 / t² - 4 / t +1 ≥ 0 ;
(t² - 4t +3) / t² ≥ 0
для квадратного трехчлена t² - 4t +3 t₁=1 корень: 1² - 4*1+3 = 1- 4+3 =0.
t₂ =3/t₁=3/1=1 (или t₂ =4 -1=3)
* * * наконец можно и решить уравнение t² - 4t +3=0 * * *
(t² - 4t +3) / t² ≥ 0 ⇔ (t -1)(t - 3) / t² ≥ 0 .
+ + - +
Объяснение:a)
{ 2^(2-x²) -1 ≤ 1 ; 2^(2-x²) -1 ≠ 0 .⇔ { 2^(2-x²) ≤ 2 ; 2^(2-x²) ≠ 1 . ⇔
{ 2^(2-x²) ≤ 2¹ ; 2^(2-x²) ≠ 2⁰.⇔ {2-x² ≤ 1 ; 2 - x² ≠ 0.⇔{ x² -1 ≥ 0 ; x² ≠ 2⇔
{ (x+1)(x-1) ≥ 0 ; x ≠ ±√2 . ⇒ x∈ ( -∞ ; -√2 ) ∪ (-√2 ; -1] ∪ [1 ; √2) U (√2 ; ∞) .
b)
2^(2-x²) -1 ≥ 3 ⇔ 2^(2-x²) ≥ 4 ⇔2^(2-x²) ≥ 2² ⇔2- x² ≥ 2 ⇔ x² ≤ 0 ⇒ x=0.
ответ: x∈ ( -∞ ; -√2 ) ∪ (-√2 ; -1] ∪ { 0} ∪ [1 ; √2) U (√2 ; ∞) .
1. Выносим х за скобку: х(х+3)>0
Неравенство больше нуля только когда оба множителя либо положительные, либо отрицательные
х>0 и x+3>0 (получаем х>0)
x<0 и x+3<0 (получаем х<-3)ответ. x>0, x<-3
2. x2-16<=0 - неравенство меньше или равно нулю когда множители имеют разные знаки:
(x-4)(x+4)<=0, получаемx-4>=0 и x+4<=0 (нет решений)
x-4<=0 и x+4>=0 (-4<=x<=4)
ответ: -4x<=x<=4
3. (x+2)(x-1)>=0 Неравенство больше нуля только когда оба множителя либо положительные, либо отрицательные
x+2>=0 и x-1<=0 (-2<=x<=1)
x+2<=0 и x-1>=0 (нет решений)
ответ: -2<=x<=1