Пусть емкость х л. х л чистой кислоты в сосуде содержалось, 2,5* - взяли в первый раз чистой кислоты после переливания 2,5 л 96% раствора кислоты. В сосуде осталось х - (литров) кислоты. После этого долили 2,5 л 80%-ного раствора кислоты, то есть 2,5* л кислоты. Тогда кислоты стало х - +2,5* = х – 2/5 (л) После этого отлили 2,5 л смеси, то есть л чистой кислоты. Тогда осталось ( х – 2/5) - л кислоты. К ним было добавлено еще 2,5* (литров) кислоты и ее стало ( х – 2/5) - +2 л С другой стороны, известно, что получится 89%-ный раствор кислоты, и так как емкость сосуда х л, то в нем содержится 0,89х (л) кислоты. Получится уравнение: ( х – 2/5) - +2 = 0,89х Упрощая, 7х2 – 80х +100 = 0 Корни х=10, х=0,7. Так как х>2,5, то х=10. ответ. Емкость сосуда 10 литров.
Дано уравнение cos a/2 + sin a/2 = -0,2 .
Пусть а/2 = х, применим формулу cos x = √(1 - sin²x).
Получаем √(1 - sin²x) + sin x = -0,2.
Перенесём sin х вправо и возведём обе части в квадрат.
1 - sin²x = (-0,2 - sin x)² = 0,04 + 0,4sin x + sin²x.
2sin²x + 0,4sin x - 0,96 = 0. Пусть sin x = t.
Ищем дискриминант:
D=0.4^2-4*2*(-0.96)=0.16-4*2*(-0.96)=0.16-8*(-0.96)=0.16-(-8*0.96)=0.16-(-7.68)=0.16+7.68=7.84;
Дискриминант больше 0, уравнение имеет 2 корня:
t_1=(2root7.84-0.4)/(2*2)=(2.8-0.4)/(2*2)=2.4/(2*2)=2.4/4=0.6;
t_2=(-2root7.84-0.4)/(2*2)=(-2.8-0.4)/(2*2)=-3.2/(2*2)=-3.2/4=-0.8.
Отсюда видит, что есть 2 решения переменной (а/2) = х с учётом формул cos x = √(1 - sin²x) и условия cos (а/2) + sin (a/2)= -0,2.)
1) sin (a/2) = 0,6, cos (a/2) = -0,8,
2) sin (a/2) = -0,8, cos (a/2) = 0,6.
Для любого варианта синус двойного угла определится так:
sin a = 2sin(a/2)*cos(a/2) = 2*(-0,8)*0,6 = -0,96.