За х часов может подготовить газон первая бригада, работая самостоятельно. За (х-10) часов может подготовить газон первая бригада, работая самостоятельно. Пусть 1 - это весь объём работы, тогда 1/х - делает за 1 час первая бригада. 1/(х-10) - делает за 1 час вторая бригада. 12/х - сделала за 12 час первая бригада. 9/(х-10) - сделала за 9 час вторая бригада. 60% от 1 = 0,6 = 3/5 - сделали обе бригады. Уравнение
При х≠10 и х > 10 имеем 12·5·(х-10) + 9·5х=3х(х-10) 60х-600+45х=3х²-30х 3х²-135х+600=0 Разделим обе части уравнения на 3 и получим: х² - 45х + 200 = 0 D = b² - 4ac D = 45²-4·1·200= 2025 - 800= 1225 √D = √1225 = 35 х₁ = (45 + 35)/2 = 80/2 = 40 х₂ = (45-35)/21 = 10/2 = 5 не удовлетворяет условию, т.к. должно быть х>10. Итак, за 40 часов может подготовить газон первая бригада, работая самостоятельно. За 40-10 = 30 часов может подготовить газон первая бригада, работая самостоятельно. ответ: 40 час; 30час
1) cos(x/3) > √3/2 Если нарисовать тригонометрический круг и отметить точки, где cos a = √3/2, то есть a1 = pi/6 + 2pi*k; a2 = -pi/6 + 2pi*k, то станет понятно, что решение неравенства: x/3 ∈ (-pi/6 + 2pi*k; pi/6 + 2pi*k) x ∈ (-pi/2 + 6pi*k; pi/2 + 6pi*k) Это решение приведено на рисунке 1.
2) 3ctg(pi/6 + x/2) > -√3 ctg(pi/6 + x/2) > -√3/3 Здесь лучше показать решение на графике котангенса, рис. 2. ctg a = -√3/3; a = 2pi/3 + pi*k; ctg a не определен (условно равен +oo) при a = pi*k pi/6 + x/2 ∈(pi*k; 2pi/3 + pi*k) x/2 ∈ (-pi/6 + pi*k; 2pi/3 - pi/6 + pi*k) = (-pi/6 + pi*k; pi/2 + pi*k) x ∈ (-pi/3 + 2pi*k; pi + 2pi*k)
За (х-10) часов может подготовить газон первая бригада, работая самостоятельно.
Пусть 1 - это весь объём работы, тогда
1/х - делает за 1 час первая бригада.
1/(х-10) - делает за 1 час вторая бригада.
12/х - сделала за 12 час первая бригада.
9/(х-10) - сделала за 9 час вторая бригада.
60% от 1 = 0,6 = 3/5 - сделали обе бригады.
Уравнение
При х≠10 и х > 10 имеем
12·5·(х-10) + 9·5х=3х(х-10)
60х-600+45х=3х²-30х
3х²-135х+600=0
Разделим обе части уравнения на 3 и получим:
х² - 45х + 200 = 0
D = b² - 4ac
D = 45²-4·1·200= 2025 - 800= 1225
√D = √1225 = 35
х₁ = (45 + 35)/2 = 80/2 = 40
х₂ = (45-35)/21 = 10/2 = 5 не удовлетворяет условию, т.к. должно быть х>10.
Итак, за 40 часов может подготовить газон первая бригада, работая самостоятельно.
За 40-10 = 30 часов может подготовить газон первая бригада, работая самостоятельно.
ответ: 40 час; 30час
Если нарисовать тригонометрический круг и отметить точки, где
cos a = √3/2, то есть a1 = pi/6 + 2pi*k; a2 = -pi/6 + 2pi*k,
то станет понятно, что решение неравенства:
x/3 ∈ (-pi/6 + 2pi*k; pi/6 + 2pi*k)
x ∈ (-pi/2 + 6pi*k; pi/2 + 6pi*k)
Это решение приведено на рисунке 1.
2) 3ctg(pi/6 + x/2) > -√3
ctg(pi/6 + x/2) > -√3/3
Здесь лучше показать решение на графике котангенса, рис. 2.
ctg a = -√3/3; a = 2pi/3 + pi*k;
ctg a не определен (условно равен +oo) при a = pi*k
pi/6 + x/2 ∈(pi*k; 2pi/3 + pi*k)
x/2 ∈ (-pi/6 + pi*k; 2pi/3 - pi/6 + pi*k) = (-pi/6 + pi*k; pi/2 + pi*k)
x ∈ (-pi/3 + 2pi*k; pi + 2pi*k)