Запиши одночлены в стандартном виде и укажи те, у которых одинаковая буквенная часть:
1) 4p(в 15 степени)⋅7k
2) k(в 7 степени)p(во 2 степени)⋅11k4p12
3) 12k(в 14 степени)⋅2p(в 11 степени)
4) 15pk⋅1,4k(в 7 степени)
5) 7k(в 11 степени)p(в 14 степени) ⋅1,4
f(x) = (x−a)(x−b)+(x−a)(x−c)+(x−b)(x−c)
и исследовать её поведение.
а) при x→±∞: y→±∞
б) в силу симметрии функции относительно параметров a, b, c без ограничения общности можно считать, что a≤b≤c
f(x=a) = (a−b)(a−c)
f(x=b) = (b−a)(b−c)
f(x=c) = (c−a)(c−b)
б1) пусть сначала все числа a, b, c различны: a<b<c
f(x=a) > 0
f(x=b) < 0
f(x=c) > 0
Значит, f(x) меняет знак трижды и, следовательно, имеет как минимум три корня: на интервалах (−∞,a), (a,b), (b,c).
б2) если хотя бы два числа из тройки (a,b,c) совпадают, то хотя бы одно из чисел a, b, c будет корнем уравнения f(x)=0.
Утверждение доказано.
Аналогично получаем уравнение прямой BC y = –3x/4 + 17/4, которая пересекает Ox в x = 17/3, назовём эту точку N.
Тогда MN = 17/3 – 3/2 = 25/6 как основание прямоугольного треугольника BMN (угол B — прямой). Высота данного треугольника равна абсциссе точки B — 2. Таким образом, площадь треугольника равна 0.5(2)(25/6) = 25/6.
Найдём расстояние (а оно же и сторона квадрата) между точками A и B: AB = √(9 + 16) = 5, здесь же найдём площадь всего квадрата: 5² = 25. Тогда площадь пятиугольника MNCDA равна 25 – 25/6 = 125/6.
Наконец, найдём искомое отношение площадей треугольника BMN к пятиугольнику MNCDA: 25/6 : 125/6 = 25 : 125 = 1 : 5.
ответ: 1 : 5.