Запиши ответы Вычисли значение целого выражения при данном значении буквы если x=3,то 5x - 10 = если y=-2,то -5y - 9 = если x = -1,то x2 + x = если y = 3,то y2 - y =
A1) Тангенс угла наклона касательной к графику функции f(x)=5x^2+3x-1 в точке с абсциссой x0=0,2 равен производной функции в заданной точке. f(x) = 5x²+3x-1, f'(x) = 10x+3, f'(xo)= 10*0.2+3 = 2+3 = 5.
A2) Угловой коэффициент касательной ,проведенной к графику функции f(x)=x^5-5x^5-3 в точке с абсциссой x0=-1. Тут в задании что то со степенями напутано.
A3) Уравнение касательной к графику функции f(x)=x-3x^2 в точке с абсциссой x0=2.
Уравнение касательной y = f ’(x0) · (x − x0) + f (x0)
Здесь f ’(x0) — значение производной в точке x0, а f (x0) — значение самой функции.
Значение функции в точке х = 2:
f(2) = 2-3*2² = 2-12 = -10.
Производная функции равна f'(x) = 1-6x.
В точке Хо = 2 её значение f'(2) = 1-6*2 = -11.
Уравнение касательной: у = -11(х-2)-10 или, раскрыв скобки,
у = -11х+22-10 = -11х+12.
B2) Даны уравнения функции y=0,5x^4-x и касательной к её графику
y=-(3/4)x-(3/32). Производная функции равна f'(x) = 2х³-1. Так как производная равна коэффициенту перед х в уравнении касательной, то 2х³-1 = -3/4. 8х³-4 = -3, 8х³ = 1, х = ∛(1/8) = 1/2 это абсцисса точки касания..
f(x) = 5x²+3x-1,
f'(x) = 10x+3,
f'(xo)= 10*0.2+3 = 2+3 = 5.
A2) Угловой коэффициент касательной ,проведенной к графику функции f(x)=x^5-5x^5-3 в точке с абсциссой x0=-1.
Тут в задании что то со степенями напутано.
A3) Уравнение касательной к графику функции f(x)=x-3x^2 в точке с абсциссой x0=2.
Уравнение касательной y = f ’(x0) · (x − x0) + f (x0)
Здесь f ’(x0) — значение производной в точке x0, а f (x0) — значение самой функции.
Значение функции в точке х = 2:
f(2) = 2-3*2² = 2-12 = -10.
Производная функции равна f'(x) = 1-6x.
В точке Хо = 2 её значение f'(2) = 1-6*2 = -11.
Уравнение касательной: у = -11(х-2)-10 или, раскрыв скобки,
у = -11х+22-10 = -11х+12.
B2) Даны уравнения функции y=0,5x^4-x и касательной к её графику
y=-(3/4)x-(3/32).Производная функции равна f'(x) = 2х³-1.
Так как производная равна коэффициенту перед х в уравнении касательной, то 2х³-1 = -3/4.
8х³-4 = -3,
8х³ = 1,
х = ∛(1/8) = 1/2 это абсцисса точки касания..
B₃* B₇=28 ⁴/₉=²⁵⁶/₉
q-? S₇-?
B₃=B₁*q²
B₅=B₁*q⁴
B₇=B₁*q⁶
{B₁*q² * B₁*q⁴=⁶⁴/₉ {B₁² * q⁶=⁶⁴/₉
{B₁*q² * B₁*q⁶=²⁵⁶/₉ {B₁² * q⁸=²⁵⁶/₉
B₁²=⁶⁴/₉ : q⁶ =64
9q⁶
64 * q⁸ = 256
9q⁶ 9
64q² =256
9 9
64q²=256
q²=256
64
q²=4
q₁=2
q₂=-2
1) При q=2:
B₁²= 64 = 1
9*2⁶ 9
B₁=¹/₃ или B₁=-¹/₃
B₇=B₁*q⁶
a) При B₁=¹/₃ и q=2 B₇=¹/₃*2⁶=⁶⁴/₃
S₇=B₇q-B₁=⁶⁴/₃ * 2 - ¹/₃ =127 =42 ¹/₃
q-1 2-1 3
б) При B₁=-¹/₃ и q=2 B₇=-¹/₃*2⁶=-⁶⁴/₃
S₇=-⁶⁴/₃ * 2 +¹/₃ =-127 =-42 ¹/₃
2-1 3
2) При q=-2
B₁=¹/₃ или B₁=-¹/₃
a) При B₁=¹/₃ и q=-2:
B₇=¹/₃*(-2)⁶=⁶⁴/₃
S₇=⁶⁴/₃ * (-2) - ¹/₃ =-¹²⁸/₃ - ¹/₃ = -¹²⁹/₃ =129 =14 ³/₉ =14 ¹/₃
-2-1 -3 -3 9
б) При B₁=-¹/₃ и q=-2
B₇=-¹/₃*(-2)⁶=-⁶⁴/₃
S₇=-⁶⁴/₃ * (-2)+¹/₃ =¹²⁸/₃ + ¹/₃ =¹²⁹/₃ =-129 =-14 ¹/₃
-2-1 -3 -3 9
ответ: 1) при B₁=¹/₃ и q=2 S₇=42 ¹/₃;
2) при B₁=-¹/₃ и q=2 S₇=-42 ¹/₃;
3) при B₁=¹/₃ и q=-2 S₇=14 ¹/₃;
4) при B₁=-¹/₃ и q=-2 S₇=-14 ¹/₃