Нам известны основания a и b рваные 18+5=23 и 12 соответственно.
Нам неизвестна высота, но дан прямоугольный треугольник с острым углом в 45° => находим второй угол прямоугольного треугольника: 180-(90+45) = 45° => углы при основании равны, а значит это равнобедренный треугольник, и высота равна 5.
1) F`(x)=3x²-6x-9 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²-6x-9=0 3·(x²-2x-3)=0 x²-2x-3=0 D=16 x₁=(2-4)/2=-1 x₂=(2+4)/2=3 - точки возможных экстремумов Обе точки принадлежат указанному промежутку Не проверяя какая из них точка максимума, какая точка минимума, просто находим F(-4)=(-4)³-3·(-4)²-9·(-4)+35=-64-48+36+35=-41 наименьшее F(-1)=(-1)³-3·(-1)²-9·(-1)+35=-1-3+9+35=40 - наибольшее F(3)=(3)³-3·(3)²-9·(3)+35=8
F(4)=(4)³-3·(4)²-9·(4)+35=64-48-36+35=15
выбираем из них наибольшее и наименьшее
2) F`(x)=3x²+18x-24 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²+18x+24=0 3·(x²+6x+8)=0 x²+6x+8=0 D=36-4·8=36-32=4 x₁=(-6-2)/2=-4 x₂=(-6+2)/2=-2 - точки возможных экстремумов Обе точки не принадлежат указанному промежутку
Объяснение:
A1.
x²-8x+12=0
Д=8²-4*12=64-48=16
x1=(8-4)/2 = 2
x2=(8+4)/2 = 6
A2.
√60/√15 = √(15*4)/√15 = √15 * √4 /√15 = √4 = 2
A3.
-8-x<4x+2
-8-2<4x+x
-10<5x
-2<x
x€(-2;+°°)
A4
Площадь трапеции рассчитывается по формуле:
S= h* (a+b)/2
Нам известны основания a и b рваные 18+5=23 и 12 соответственно.
Нам неизвестна высота, но дан прямоугольный треугольник с острым углом в 45° => находим второй угол прямоугольного треугольника: 180-(90+45) = 45° => углы при основании равны, а значит это равнобедренный треугольник, и высота равна 5.
подставляем:
S= 5*(23+12)/2 = 5*35/2 = 87,5
F`(x)=3x²-6x-9
Находим точки, в которых производная обращается в нуль.
F`(x)=0
3x²-6x-9=0
3·(x²-2x-3)=0
x²-2x-3=0
D=16
x₁=(2-4)/2=-1 x₂=(2+4)/2=3 - точки возможных экстремумов
Обе точки принадлежат указанному промежутку
Не проверяя какая из них точка максимума, какая точка минимума, просто находим
F(-4)=(-4)³-3·(-4)²-9·(-4)+35=-64-48+36+35=-41 наименьшее
F(-1)=(-1)³-3·(-1)²-9·(-1)+35=-1-3+9+35=40 - наибольшее
F(3)=(3)³-3·(3)²-9·(3)+35=8
F(4)=(4)³-3·(4)²-9·(4)+35=64-48-36+35=15
выбираем из них наибольшее и наименьшее
2)
F`(x)=3x²+18x-24
Находим точки, в которых производная обращается в нуль.
F`(x)=0
3x²+18x+24=0
3·(x²+6x+8)=0
x²+6x+8=0
D=36-4·8=36-32=4
x₁=(-6-2)/2=-4 x₂=(-6+2)/2=-2 - точки возможных экстремумов
Обе точки не принадлежат указанному промежутку
F(0)=10 - наименьшее
F(3)=3³+9·3²-24·3+10=46 - наибольшее