Пусть х ч - время работы одного крана, тогда (х + 5) ч - время работы другого крана.
Работу по разгрузке примем за единицу, тогда 1/х - работа, которую выполнит первый кран за 1 ч, 1/(х+5) - работа, которую выполнит второй кран за 1 ч, 1/6 - совместная работа за 1 ч. Уравнение:
1/х + 1/(х+5) = 1/6
Приводим обе части уравнения к общему знаменателю х · (х +5) · 6
- это уравнение окружности с центром, движущимся по кривой y=√x и радиусом (a-√a)/√2.
· 2-ое уравнение - совокупность двух прямых
1) Исследуем взаимное расположение первой прямой и окружности. Подставим y = x в первое уравнение системы. Получим квадратное уравнение:
⇒ прямая y = x является касательной к окружности при любых a ≥ 0, что дает нам одно решение системы:
(!) Заметим, что при a = 0 и a = 1 окружность вырождается в точку (0, 0) и (1, 1) соответственно ⇒ система имеет только одно решение при этих значениях a.
2) Исследуем взаимное расположение второй прямой и окружности. Подставим y = (x+4a)/(4√a) в первое уравнение системы. Получим квадратное уравнение:
Оценим дискриминант при значениях a = 2, a = 3, a ≥ 4:
Таким образом, при целочисленном a ≥ 2 прямая пересекает окружность в двух различных точках и, соответственно, дает 2 решения системы. Убедимся что они не совпадают с полученным ранее решением при целочисленных a. Для этого подставим x = y = = (a + √a)/2 в уравнение y = (x + 4a)/(4√a), откуда найдем a = (33+5√41)/32 - не явл. целочисленным.
При a = 0 и a = 1 система имеет одно решение. При a ≥ 2, a ∈ Z система имеет 3 решения.
Пусть х ч - время работы одного крана, тогда (х + 5) ч - время работы другого крана.
Работу по разгрузке примем за единицу, тогда 1/х - работа, которую выполнит первый кран за 1 ч, 1/(х+5) - работа, которую выполнит второй кран за 1 ч, 1/6 - совместная работа за 1 ч. Уравнение:
1/х + 1/(х+5) = 1/6
Приводим обе части уравнения к общему знаменателю х · (х +5) · 6
(х + 5) · 6 + х · 6 = х · (х + 5)
6х + 30 + 6х = х² + 5х
х² + 5х - 12х - 30 = 0
х² - 7х - 30 = 0
D = b² - 4ac = (-7)² - 4 · 1 · (-30) = 49 + 120 = 169
√D = √169 = ±13
х = (-b±√D)/2a
х₁ = (7-13)/(2·1) = (-6)/2 = -3 (не подходит, так как < 0)
х₂ = (7+13)/(2·1) = 20/2 = 10 (ч) - время работы одного крана
10 + 5 = 15 (ч) - время работы другого крана
ответ: 10 ч и 15 ч.
ОДЗ: a ≥ 0
Геометрия уравнений:
· 1-ое уравнение системы можно представить в виде
- это уравнение окружности с центром, движущимся по кривой y=√x и радиусом (a-√a)/√2.
· 2-ое уравнение - совокупность двух прямых
1) Исследуем взаимное расположение первой прямой и окружности. Подставим y = x в первое уравнение системы. Получим квадратное уравнение:
⇒ прямая y = x является касательной к окружности при любых a ≥ 0, что дает нам одно решение системы:
(!) Заметим, что при a = 0 и a = 1 окружность вырождается в точку (0, 0) и (1, 1) соответственно ⇒ система имеет только одно решение при этих значениях a.
2) Исследуем взаимное расположение второй прямой и окружности. Подставим y = (x+4a)/(4√a) в первое уравнение системы. Получим квадратное уравнение:
Оценим дискриминант при значениях a = 2, a = 3, a ≥ 4:
· a = 2
т.к. 95/66 = (99 - 4)/66 = 1.5 - (2/33) > 1.5 - (7/100) = 1.43 > √2 ≈ 1.41
· a = 3
т.к. 190/98 = (196-6)/98 = 2 - (6/98) > 2 - (7/100) = 1.93 > √3 ≈ 1.73
· a ≥ 4
- очевидно, т. к.
ведь
Таким образом, при целочисленном a ≥ 2 прямая пересекает окружность в двух различных точках и, соответственно, дает 2 решения системы. Убедимся что они не совпадают с полученным ранее решением при целочисленных a. Для этого подставим x = y = = (a + √a)/2 в уравнение y = (x + 4a)/(4√a), откуда найдем a = (33+5√41)/32 - не явл. целочисленным.
При a = 0 и a = 1 система имеет одно решение. При a ≥ 2, a ∈ Z система имеет 3 решения.
ответ: при любых целочисленных a ≥ 0.