1) Простое уравнение y - скорость грузовика (x + 20) - скорость авто тогда: (x+20)* 5 = x*7 5x + 100 = 7x 100 = 7x- 5x 2x = 100 x = 50 - скорость грузовика Расстояние равно 50 * 7 = 350
2) x - скорость течения, тогда : (4+x) скорость лодки по течению (4-x ) скорость лодки против течения (4+x)*2,4 = 1,2 + (4-x)*4.8 9.6 + 2.4x = 1.2 + 19.2 - 4.8x 2.4x+4.8x = 19.2+1.2-9.6 7.2x= 10.8 x = 1.5 км/ч
Если меньшая сторона прямоугольника - х см, то из условия большая сторона на 4 см больше, то есть (х+4), а диагональ - на 8 см больше, то есть (х+8). Составляем уравнение исходя из теоремы Пифагора для прям. тр-ка, в котором гипотенуза - диагональ пр-ка, а катеты - его стороны: (х+8)²= х² + (х+4)² х² + 16х + 64 = х² + х² + 8х + 16 х² - 8х - 48 = 0 По теореме Виета корни: х₁ = -4 х₂ = 12 Первый корень не подходит по смыслу. Значит меньшая сторона пр-ка равна 12. Большая тогда равна 12+4 = 16 см. ответ: 12см; 16 см.
y - скорость грузовика
(x + 20) - скорость авто
тогда:
(x+20)* 5 = x*7
5x + 100 = 7x
100 = 7x- 5x
2x = 100
x = 50 - скорость грузовика
Расстояние равно 50 * 7 = 350
2) x - скорость течения, тогда :
(4+x) скорость лодки по течению
(4-x ) скорость лодки против течения
(4+x)*2,4 = 1,2 + (4-x)*4.8
9.6 + 2.4x = 1.2 + 19.2 - 4.8x
2.4x+4.8x = 19.2+1.2-9.6
7.2x= 10.8 x = 1.5 км/ч
Составляем уравнение исходя из теоремы Пифагора для прям. тр-ка, в котором гипотенуза - диагональ пр-ка, а катеты - его стороны:
(х+8)²= х² + (х+4)²
х² + 16х + 64 = х² + х² + 8х + 16
х² - 8х - 48 = 0
По теореме Виета корни:
х₁ = -4
х₂ = 12
Первый корень не подходит по смыслу. Значит меньшая сторона пр-ка равна 12.
Большая тогда равна 12+4 = 16 см.
ответ: 12см; 16 см.