Запишите числа в виде переодической десятичной дроби: 1)1/3;1/7;-20/9;5/6; 2)-8/15;10,28;-17;3/16; 3)1 3/5;5/16;-1 5/8;7/30; 4)1 12/25;5/16;49/80;17/30.
Раскроем скобки справа, перенесем влево и дополним до полных квадратов относительно х и у:
Выражаем x через y:
(вообще, правильнее было бы рассмотреть два случая: когда перед корнем стоит знак плюс, что мы и делаем, и когда перед ним стоит знак минус, но нас интересует максимальное значение, логичнее было бы рассмотреть только положительное значение)
Наша целевая функция, в которой будем находить максимум, имеет вид:
, где S - сумма решений системы уравнений.
Найдем производную по х, приравняем к нулю эту функцию
Получим
Таким образом, мы сможем найти y: y₁ = 4; y₂ = 4
Стало быть, только в точке (4;4) достигается этот максимум суммы, которая равна 4+4 = 8
В обоих случаях рассматриваем прямоугольный треугольник с одним из углов
В первом случае примем прилежащий к углу катет за 3, а гипотенузу - за 5. Тогда неизвестный катет вычислим по т. Пифагора как Синус угла есть отношение противолежащего катета к гипотенузе, т.е. 4/5. Тангенсом - отношение противолежащего катета к прилежащему, т.е. 4/3. Котангенсом - отношение прилежащего катета к противолежащему, т.е. 3/4.
Во втором случае примем катет, лежащий против за 4, а гипотенузу - за 5. Неизвестный катет, по теореме Пифагора, будет равен 3. Косинусом есть отношение прилежащего катета к гипотенузе, т.е. 3/5. Тангенсом - отношение противолежащего катета к прилежащему, т.е. 4/3. Котангенсом - отношение прилежащего катета к противолежащему, т.е. 3/4.
8
Объяснение:
Сложим два равенства, получим уравнение:
Раскроем скобки справа, перенесем влево и дополним до полных квадратов относительно х и у:
Выражаем x через y:
(вообще, правильнее было бы рассмотреть два случая: когда перед корнем стоит знак плюс, что мы и делаем, и когда перед ним стоит знак минус, но нас интересует максимальное значение, логичнее было бы рассмотреть только положительное значение)
Наша целевая функция, в которой будем находить максимум, имеет вид:
, где S - сумма решений системы уравнений.
Найдем производную по х, приравняем к нулю эту функцию
Получим
Таким образом, мы сможем найти y: y₁ = 4; y₂ = 4
Стало быть, только в точке (4;4) достигается этот максимум суммы, которая равна 4+4 = 8
В обоих случаях рассматриваем прямоугольный треугольник с одним из углов
В первом случае примем прилежащий к углу катет за 3, а гипотенузу - за 5. Тогда неизвестный катет вычислим по т. Пифагора как Синус угла есть отношение противолежащего катета к гипотенузе, т.е. 4/5. Тангенсом - отношение противолежащего катета к прилежащему, т.е. 4/3. Котангенсом - отношение прилежащего катета к противолежащему, т.е. 3/4.
Во втором случае примем катет, лежащий против за 4, а гипотенузу - за 5. Неизвестный катет, по теореме Пифагора, будет равен 3. Косинусом есть отношение прилежащего катета к гипотенузе, т.е. 3/5. Тангенсом - отношение противолежащего катета к прилежащему, т.е. 4/3. Котангенсом - отношение прилежащего катета к противолежащему, т.е. 3/4.