Обозначим трапецию АВСD, AB=CD, АD=16√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=8√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠ АВН=180°-90°-60°=30°. Катет АН=АВ:2=4√3. ⇒ DH=AD-AH=16√3-4√3=12√3. Высота ВН=АВ•sin60°=8√3•(√3/2)=12. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=12•12√3=144√3 (ед. площади)
==========
Как вариант решения можно доказать, что треугольник DCB - равнобедренный, ВС=CD=AB, вычислить длину высоты и затем площадь ABCD.
Обозначим трапецию АВСD, AB=CD, АD=16√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=8√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠ АВН=180°-90°-60°=30°. Катет АН=АВ:2=4√3. ⇒ DH=AD-AH=16√3-4√3=12√3. Высота ВН=АВ•sin60°=8√3•(√3/2)=12. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=12•12√3=144√3 (ед. площади)
==========
Как вариант решения можно доказать, что треугольник DCB - равнобедренный, ВС=CD=AB, вычислить длину высоты и затем площадь ABCD.
1) sin x = √2/2
x = (-1)ⁿ × arcsin √2/2 + πn, n∈Z
x = (-1)ⁿ × π/4 + πn, n∈Z
2) sin x = -√2/2
x = (-1)ⁿ × arcsin (-√2/2) + πn, n∈Z
x = (-1)ⁿ × -arcsin √2/2 + πn, n∈Z
x = (-1)ⁿ × (-π/4) + πn, n∈Z
3) sin x = -√3/2
x = (-1)ⁿ × arcsin (-√3/2) + πn, n∈Z
x = (-1)ⁿ × -arcsin √3/2 + πn, n∈Z
x = (-1)ⁿ × (-π/3) + πn, n∈Z
4) sin x = √3/2
x = (-1)ⁿ × arcsin √3/2 + πn, n∈Z
x = (-1)ⁿ × arcsin √3/2 + πn, n∈Z
x = (-1)ⁿ × π/3 + πn, n∈Z
5) sin x = 4/5
x = (-1)ⁿ × arcsin 4/5 + πn, n∈Z
x = (-1)ⁿ × 0,927295 + πn, n∈Z
x = (-1)ⁿ × 53,1° + πn, n∈Z